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This project is derived from the paper in the readings titled: Learned Cardinalities: 
Estimating Correlated Joins with Deep Learning. 
In this paper, the authors propose a deep learning solution to estimating the cardinalities of the 
joins before feeding it into the query optimiser. The model they employ is an MSCN ( multi-set 
convolutional network), a neural network module for operating on sets. 
In this project, I experiment with different hyperparameters and find the following configuration 
to give the best performance:  

1.​ Architecture - Encoder-decoder for the 3 MLPs - table, predicates and joins. 
2.​ Batch Size - 128 Samples 
3.​ Hidden Units - varies per layer - but starts with 256 and builds in powers of 2. 
4.​ Learning Rate - 0.001 
5.​ Loss Function - Mean Logarithmic Squared Error (MLSE) 
6.​ Optimiser - Adam 

Author’s Architecture: 
 
 
 
The input to the MSCN is a representation of a 
query - denoted in terms of multiple sets( 
specifically 3 - one for the tables, one for the joins 
and one for the predicates). A simple 2 layer MLP 
is learnt per set in the input. The output of each set 
is the average over the individual transformed 
representations of its elements. Then the individual 
representations of each of the sets are concatenated 
and passed through another output MLP. 
 
 
 

https://arxiv.org/abs/1809.00677
https://arxiv.org/abs/1809.00677


Experimental Setup: 
The authors train and test their model on a NVIDIA GeForce GTX 1050 Ti (4 GB GDDR5) GPU 
using the PyTorch framework. They use 100,000 random queries with a 90-10 train-test split.  
The Hyperparameters the authors have set: 

1.​ Batch Size - 64 Samples 
2.​ Hidden Units - 256 
3.​ Learning Rate - 0.001 
4.​ Loss Function - Q-Error 
5.​ Optimiser - Adam 

I used this configuration and ran a baseline test on the synthetic workload as my system 
configuration varies with that of the authors, and it would be better to compare the results of my 
testing with my own run of the baseline rather than compare with the numbers quoted by the 
paper. 
 
I obtained the following results (Q-Error) for the baseline while running it on the synthetic 
workload: 

 

Experiments Run: 
Experimental setup: 
Training and testing was done on Google Colab, using the T4 (Tesla T4) GPU using the PyTorch 
framework. 

1.​ Learning Rates 
 
I first began the testing with different learning 
rates. I tried rates from 10-1 to 10-5 in negative 
powers of 10 [1].  
In the plot, I have used a symmetrical 
logarithm scale for the vertical axis, with the 
linear range set to 10. So, values from 0 to 10 
are on a linear scale and all values above 10 
are on a logarithmic scale (The same scale 
has been used for all Loss vs Epochs graphs 
henceforth). 



It can be seen that the purple graph, corresponding to the learning rate of 0.001, achieves a faster 
convergence and converges to a lower overall loss than the other learning rates. 

2.​  Batch Size 

I tested batch sizes in powers of 2 starting from 24 up till 211. I have plotted the q-error for the 
different batch sizes as well as their corresponding training time per epoch. The use of small 
batch sizes has been shown to improve generalization performance and optimization con- 
vergence, whereas large batch sizes improve the parallelism and hence reduce the time taken per 
epoch [2]. This can be seen in the graphs above. 
While a batch size of 64 achieves the best performance with respect to the mean, comparing both 
mean and median performance along with the corresponding training time per epoch, I believe a 
batch size of 128 would be a better choice. 

3.​ Optimizers  
 
 
 
 
 
I compared the following optimizers: Adam, Stochastic 
Gradient Descent (SGD), SGD with momentum (different 
values), SGD with Nesterov acceleration, and RMSProp.  
Out of these five, only RMSProp and Adam converged to 
an acceptable loss.  



As it is visible in the graph, despite RMSProp and Adam converging to similar losses, Adam 
does so very smoothly and quickly. 
In the first 5 epochs, Adam noticed a significant drop over 90% in the loss, whereas a lot of 
fluctuation was observed in RMSProp, delaying the convergence. 

4.​ Loss Functions  
The authors of the paper mention that they tested Mean Squared Error(MSE) in addition to the 
Q-Error during their training process. They however pick the Q-Error as their loss function as it 
directly corresponds to the objective they are trying to optimize.  

 Testing this out on my own, using MSE as 
the loss function had losses and performance 
that was significantly worse (the mean of the 
predictions on the synthetic workload was 
more than 100x worse)  than while using 
Q-Error.  
I noticed that the main cause for this 
discrepancy was the fact that the cardinality 
estimates are generally wrong by 
magnitudes when compared to the actual 
values of the cardinalities, hence, choosing a 
loss function that works on this difference 
becomes imperative.  
I applied the MSE loss function over the 
predicted and true values of the cardinalities 
after taking their log (MLSE).  

 
 
 
 
 
 
 

When testing on the synthetic workload (still measuring the Q-Error, despite having a different 
loss function), the model trained using MLSE performs better than the model trained using 
the Q-Error loss function on most metrics. 

5.​ Activation Function 
Since ReLU offers better and quicker convergence than activation functions like sigmoid 
and tanh, I only tested out with leaky-ReLU, which didn’t offer any performance gain. 
This was the performance (Q-Error) obtained on the synthetic workload:  



 

6.​ Architectural Changes 
The first change I made was to test the performance of the model with another hidden layer in 
the MLPs corresponding to the tables, joins and predicates. I reduced the number of hidden units 
by half, and created 2 layers. I then also tested with 3 full layers. There was no performance 
gain in any of the metrics for any of the different architectures. 
 
Since the inputs (tables, joins, predicates) are representations of features, I reasoned that having 
an autoencoder-like structure for each of the MLPs would be worth considering. 
I also considered a version where I added the encoder-decoder to the output MLP, but that 
offered very little gain in performance. 
 
The architecture for the predicate, join and table MLPs I tested was:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There was a big drop in the max Q-error of the new architecture as compared to the baseline. 
Which lends itself into the reduction of the mean as well. This hints that the number of outlier 
predictions (really bad estimations) have reduced in the new architecture. 



 
 
I also tested out adding a residual connection to increase the power of the network as it had 
potential for a better performance and wasn’t currently overfitting too much (mean Q-Error for 
training was 2.43 and for the validation set it was 2.81). I experimented both with and without 
dropout layers reasoning that due to the added complexity, the model might start to overfit.  
 

 
 
 
 
There was however no significant gain in 
performance in this case either.  

 

 

 

Conclusion 
After all the experiments, the following model should be the most optimal model for the use case 
of cardinality estimation. 

7.​ Architecture - Encoder-decoder for the 3 MLPs - table, predicates and joins. 
8.​ Batch Size - 128 Samples 
9.​ Hidden Units - varies per layer - but starts with 256 and builds in powers of 2. 
10.​Learning Rate - 0.001 
11.​Loss Function - Mean Logarithmic Squared Error (MLSE) 
12.​Optimiser - Adam 

 
Testing the predictions of this complete model on the synthetic workload and comparing it with 
the base model provided the following results for the Q-Error: 



 
 
It is seen that the model beats the baseline on all fronts except for the 99th percentile metric, 
considering that the Max metric is lesser than the baseline, this can be suggestive of a more even 
spread and reduction in outliers.  

 
 
 
 
 
 
 
Seen from the loss vs number of 
epochs graph, owing to the MLSE loss 
function, the best model achieves a 
drop faster and converges quicker. 
 
 
 
 

In conclusion, the new model with the selected hyperparameters beats the model suggested in the 
paper by a very small margin. Even then, the mean predictions are still wrong by the ratio of 
almost 3. The ideal q-error should be close to one, so that the difference between the predicted 
and actual cardinalities can be measured in a linear scale.  
 
This is a testament to how difficult the task  cardinality estimation truly is and solving this 
problem may require a more complex neural network (maybe transformers instead of bitmaps?) 
or an entirely new approach to the problem as seen in [3] and [4] with tree ensemble models.  
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