
 

CS322:Big Data 
 
 
 
 
 
 
Final Class Project Report 
 

Project (FPL Analytics / YACS coding): YACS  Date: 01 December 2020 

SNo Name SRN Class/Section 

1 Ashwin Alaparthi  PES1201802062 E 

2 Raghav Roy PES1201800342 E 

3 Raksha Ramesh PES1201800345 H 

4 Ritik Hariani PES1201801558 J 

  



 

 DEPT OF CSE 1 

 

Introduction 
Our project YACS, or, Yet Another Centralized Scheduler is an implementation of a 

centralized scheduler, i.e. Jobs (Comprised of multiple tasks) are sent to a main Master 

(running on a dedicated machine), which distributes these tasks among multiple workers 

machines depending on the scheduling algorithm. The workers execute the tasks allocated 

to them and inform the Master when a task completes its execution. Each worker has fixed 

number of slots (each have independent dedicated CPU, memory, etc.), where each slot can 

run one task at a time. The master must check the availability of slots in the workers before 

allocating any task to them. Once a worker finishes executing a task, the slot held by the 

task is released.  

Related work 
Documentation of YARN in Hadoop was reviewed along with Operating System concepts 

like threading, semaphores and scheduling algorithms, with sockets implementation in 

Python for communication between Master and Workers. 

Design 
In our submission, we have a program for the Master server that’s responsible for – 

• A thread listening to new job requests from Requests Server 

• Scheduling the tasks of the job, while considering any dependencies and resolving 

accordingly 

• Keeping track of slots in workers and decrementing when scheduling a task, and 

incrementing when task is finished 

• A thread to listen to updates from worker and accordingly log the time taken and 

other details for Tasks and Jobs 

Similarly, the Workers are tasked with –  

• Listening to new tasks from Master 

• Performing the task for the required amount of time (simulated by making the 

worker thread sleep for a certain amount of time)  

• Update the master back on task completion with the end time on Worker 

Design of Master –  

1. When the Master program is run, it creates two loggers to log the Task times and 

Job times. It also initiates a Task Queue to keep track of tasks to Schedule. 

2. The worker config file is read and a dictionary of workers is created with the port 

and slots on the worker.  



 

 DEPT OF CSE 2 

 

3. A schedule() function runs indefinitely and when the Task Queue is not empty, it 

schedules the task based on the required Algorithm. The 3 possible ways to schedule 

are: 

I. Random: In this scheduling algorithm, a random worker is chosen, if it 

doesn’t have any free slots, a new random worker is chosen. This runs in 

an infinite loop till the randomly chosen worker has a free slot which can 

run the task. 

II. Round Robin: In this scheduling algorithm, there is a global variable   

maintained which indicates the worker that the most recent task was 

scheduled to. The incoming task is scheduled to the next chronological 

worker that has a free slot and the global variable is updated. 

III. Least Loaded: In this scheduling algorithm, there is a helper function 

that looks at the workers and returns the worker with the maximum 

number of slots available. Every time a new task has to be scheduled this 

function is called; if no worker has a free slot, then the program sleeps 

for 1 second and calls the function again. This is repeated until the 

worker is found and the task is scheduled. 

 

4. A thread of the master listens to new Job requests on Port 5000. Upon receiving a 

new job, it notes down the Job ID and job entry time. It then stores the job in a 

dictionary, with the map tasks and reduce tasks. The map tasks of the job are added 

to the Tasks Queue.  

5. Another thread of the master listens for updates from the worker. The update 

contains worker ID, Completed Task, and time completed. It then logs the task with 

start and end time, and checks if it’s a Map or Reduce task. If all Map tasks for that 

job have been completed, we’re scheduling all the reduce tasks by adding them to 

Task Queue. If all Reduce tasks are completed, then Log the job with start and end 

time.  



 

 DEPT OF CSE 3 

 

 

Design workflow 

 

Results 
The results were as expected. The different values obtained are given below with respect to 

their scheduling algorithm for 25 requests (in seconds): 

1. Random:  

Mean time taken by jobs:  6.001155529022217  

Median time taken by jobs:  5.610398054122925 

Mean time taken by tasks:  2.564184374809265 

Median time taken by tasks:  3.0058000087738037 

2. Round Robin:  

Mean time taken by jobs:  6.139268074035645  

Median time taken by jobs:  6.3885228633880615  

Mean time taken by tasks:  2.3966108654059615 

Median time taken by tasks:  2.01705539226532 

 



 

 DEPT OF CSE 4 

 

3. Least Loaded 

Mean time taken by jobs:  6.154308681488037  
Median time taken by jobs:  6.329092502593994   
Mean time taken by tasks:  2.5047072391120757   
Median time taken by tasks:  2.0263891220092773   



 

 DEPT OF CSE 5 

 

Graphs:  

Step Plot for Number of Tasks vs Time. Bar Graph for Number of Tasks on a worker node. 

1. Least Loaded 

 



 

 DEPT OF CSE 6 

 

2. Random

 



 

 DEPT OF CSE 7 

 

3. Round-Robin

 
 

As expected, the tasks were distributed more evenly in the Round Robin 

implementation. Random had the least mean and time for jobs.  

 



 

 DEPT OF CSE 8 

 

Problems 
One of the main problems we faced was with respect to the threading implementation and 

preventing race conditions that could occur. Finding an optimum method for logging that 

was convenient and self-sufficient was another hiccup that we faced.  

Conclusion 
We learnt about the communications between a master and worker by doing which we 

learnt socket programming and threading. We learnt about the various scheduling 

algorithms and their use cases. We mainly learnt about the workings and executing of a 

distributed system and its merits. 

 

EVALUATIONS:  
 

SNo Name SRN Contribution (Individual) 

1 Ashwin Alaparthi  PES1201802062 Implemented the connections 
between the master and 
workers and formed the main 
structure of the programs. 

2 Raksha Ramesh PES1201800345 Implemented the scheduling 
algorithms. 

3 Raghav Roy PES1201800342 Implemented logging for the 
jobs and tasks. 

4 Ritik Hariani PES1201801558 Implemented the analysis and 
plotted the graphs. 

 

 

(Leave this for the faculty) 
 

Date Evaluator Comments Score 

   
 
 
 
 
 
 
 

 

 



 

 DEPT OF CSE 9 

 

 

CHECKLIST: 
 

SNo Item Status 

1. Source code documented  Done 

2. Source code uploaded to GitHub – (access link 
for the same, to be added in status →) 

Done 
https://github.com/Raksha-
Ramesh/BDProject  

3. Instructions for building and running the 
code. Your code must be usable out of the box.  

Done 

 

https://github.com/Raksha-Ramesh/BDProject
https://github.com/Raksha-Ramesh/BDProject

