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Abstract—Electroencephalograms or EEGs are essential tests
employed to diagnose any abnormalities in the brain waves
that can be related to numerous brain disorders. These EEG
recordings are ordered for a minimum length of 20 minutes
and can go up to an hour or more, which makes the process
of analysing it cumbersome and time consuming for medical
professionals, and makes diagnosis very subjective. The aim
of this paper is to aid in diagnosing EEG recordings with
higher efficiency and accuracy. This is achieved by flagging
segments of the recording into different classes that need special
attention. This includes normal sleep wave patterns like POSTS,
vertex waves and spindles, artifacts like ECG artifacts and
Eyes open/close artifacts which can lead to misdiagnosis, and
abnormal waveforms like spikes and slow waves. Most of the
existing literature focuses on classifying the entire EEG as either
abnormal or normal. However, in practice, a medical professional
interprets the EEGs by looking at only particular sections of the
recording. Therefore, our approach is to have individual segments
classified instead. EEG signals, owing to their highly dynamic
nature, are difficult for machine learning models to process and
analyze effectively. To achieve this, we explore different methods
of signal decomposition, feature elimination and classification,
and find the best combination of these for the annotation task.
Our combination of Empirical Wavelet Transform (EWT) for
signal decomposition, Recursive Feature Elimination and Linear
SVM model for classification, achieved an accuracy of 70% on
the Temple University dataset and 90.78% on a private dataset.

Index Terms—EWT, Empirical Mode Decomposition, SVC-
RFE, RBF SVM, XGBoost, Spectral Features, MLP, TUH

I. INTRODUCTION

Electroencephalography or an EEG is a way of measuring
the electrical activity of the brain. EEG recordings help
medical professionals diagnose many neurological disorders
that influence brain activity like epilepsy, encephalopathies,
along with multiple brain related attributes such as depth
of anaesthesia, coma and even brain death. Thus, accurately
reading and analysing an EEG is an important skill for any
neurologist.

During the procedure, electrodes are placed across various
sections of the scalp. Each electrode has a name and location
as specified by the 10-20 international electrode system as
seen in Fig.I. These electrodes pick up the feeble electrical
impulses between neurons present in the brain. Each electrode
is attached to an amplifier as the inherently feeble signals
need to pass through layers of bone, skin and hair before
they are picked up by the electrode. The signal is amplified
to about 1000 to 100000 times its original amplitude and
passed through an analog to digital converter. The result is a
digital signal that can be read and processed on the computer
to generate an EEG report. In case of abnormalities, they

Fig. 1. Electrode locations of International 10-20 system for EEG recording

present themselves in multiple ways. Asymmetrical recordings



of the left and right hemispheres of the brain are indicative of
abnormalities if the patient is asleep. The presence of slow
waves in the EEG recording of an awake adult patient is
indicative of abnormalities. Artifacts like eye blinks, muscle
movements and ECG interference, if recorded, could con-
tribute to incorrect diagnoses.

After capturing the EEG, the doctor goes through the
complete recording and identifies areas of the EEG that might
indicate abnormality to come up with a diagnosis.

Since it is a qualitative analysis, the accuracy often depends
upon the experience and the skill of the doctor analysing the
EEG. Hence, there is bound to be a level of human error that
comes into play, therefore, the diagnoses usually differ from
doctor to doctor for the same scan. Some scans can also clock
up to a tens of hours, which naturally causes the accuracy of
the diagnosis to reduce.

Motivated by this problem, this research is aimed towards
finding an effective solution which can automatically flag
segments of the EEG that require further reviewing by medical
professionals. These labels include normal sleep wave patterns
like POSTS, vertex waves and spindles, artifacts like ECG ar-
tifacts and Eyes open/close artifacts, and abnormal waveforms
like spikes and slow waves.

II. REVIEW OF LITERATURE

The literature survey is broken down into the different stages
corresponding to our implementation.

A. Decomposition Methods
Reference [1] state that Adaptive Decomposition methods

are more successful than Fourier Transforms for decomposing
EEG signals as they are more suited to deal with non linear
and non stationary data. The paper describes 5 methods out of
which we picked 2. Empirical Mode Decomposition (EMD)
transforms the incoming non-stationary signal into intrinsic
mode functions (IMF). Empirical Wavelet Transform (EWT)
transforms the signal into a predefined number of modes.
Once the modes/ IMFs are generated, features that quantify
the continuity and complexity of the signal are extracted from
them. The paper also describes various parameters that can be
extracted from the signals and elimination techniques such as
Fischer Score.

Reference [2] present a comparative analysis between de-
composition methods. It is mentioned that EMD can accom-
modate non-stationary as well as non linear signals. The issue
with EMD is that when it is applied to multi-channel signals,
they can be non uniform, and the nature of IMFs vary. In this
method, the signal is projected in various directions in an n-
dimensional space with these directions being selected in a
uniform manner. By doing so, an envelope is obtained in each
of the directions that the signal has been projected in. These
envelopes are then averaged and interpolated by employing
a cubic spline function and thereby the local n-dimensional
mean is calculated. An important feature of EMD that the
paper mentions is that the bands in the resultant IMFs can
be associated with a corresponding brain activity when EMD
separation is achieved.

B. Feature Elimination

Reference [3] discuss Recursive Feature Elimination (RFE)
as a wrapper-based feature selection method used to find the
most important features. This is done to reduce complexity and
negate the curse of dimensionality. Support Vector Machine
with a linear kernel is the model used for the RFE. In RFE,
one feature is eliminated in each iteration until only a subset
of the original features remain. For the classification task, the
best results are obtained when SVM, either with a linear or
rbf kernel, is used as the classification model after applying
RFE.

Reference [4] discuss how Fisher Score can be employed
for feature elimination. In this method, each feature is assigned
a score independently. The authors also introduce a General
Fisher Score that outperforms the normal Fisher Score.

C. Classification

There are mainly 2 approaches to the classification task;
one using feature based machine learning models supported
by decomposition methods, and the other methods employing
end-to-end artificial neural networks and their modifications.

1) Feature Based Machine Learning Approach: Reference
[5] describe two methods of classification, namely, k-nearest
neighbours (kNN) and random forest ensemble learning. They
used a subset of TUH’s EEG dataset consisting of 400
EEGs. Only 1 channel (T5-O1 channel) was considered over
which Principal Component Analysis was done for the feature
elimination step. The authors mention that the first minute of
the recording is sufficient to classify the entire EEG. Hence,
they use only the first 60 seconds of the EEG from which
spectral features are extracted. They arrived at an overall error
rate of 31.7%.

Reference [6] discuss a supervised method of classification
(kNN) along with an unsupervised approach to classification
of graphoelements (k-means). All the channels of the EEG are
first made to undergo adaptive segmentation. For each of the
segments, a total of 16 features are extracted after which they
are normalized. For the classification using k-means clustering,
the number of classes was chosen to be 7. Whereas, for the
kNN classification, the choice of classes was handled by the
doctor. The number of classes was set to 15 and k was chosen
to be 5. Based on their experiment, the authors concluded that
kNN was more suitable since the classes had graphoelements
with higher homogeneity than those obtained using K-means
classification.

2) Artificial Neural Network Approach: Reference [7] used
a 23 layered, one-dimensional Convolutional Neural Network
(CNN) to classify a single channel signal from the temporal
to the occipital lobe. They employed an end-to-end model;
hence, the preprocessing stage didn’t require any form of
decomposition. They did, however, have to segment the data
into 60 seconds intervals, which resulted in each input having
15000 samples, as the EEGs were recorded at a sampling rate
of 250Hz. The Deep Neural Network had 23 layers, which
were determined by brute force. These layers included a one
dimensional convolutional layer, a layer which implemented



MaxPooling, a dropout layer, followed by a layer which
implemented batch normalization, and finally, some dense
layers.

Reference [8] approached the problem with a Long Short
Term Memory (LSTM) Recurrent Neural Network (RNN)
as they highlighted that a CNN model fails to classify the
EGG accurately when the EEG has well defined spectral and
clinical correlations. However, the training of an RNN has
high complexity when it comes to the computation required
and the results can often suffer from exploding and vanishing
gradients. The latter problem is solved by using an LSTM
as opposed to a plain RNN model. The LSTM model has
very similar results, comparable to the CNN model, with the
additional benefit that the LSTM allows the visualization of
the decisions taken during classification.

III. DATA

For our work, we mainly explored 2 datasets which were
labelled segment-wise by medical professionals at Manipal
Hospitals, Bangalore. The first dataset was the TUH (Temple
University Hospital) EEG Dataset. This is a publicly available
dataset that has been used by most of the state-of-the-art
research papers [5], [7], [9]–[11]. The major issue that we
faced with the TUH Dataset was its lack of variety in the
abnormalities recorded and the quantity of abnormalities per
EEG file. To circumvent this issue, we used Manipal Hospitals’
inhouse data along with their expertise in regard to the differ-
ent labels that they deemed important and would be beneficial
to the doctors in practice. This was done by 1 technician and 2
neurologists who worked both individually and collaboratively,
by going through every EEG they sampled. In addition to this,
the data itself had a higher chance of being labelled accurately
as it is being done by the same medical professionals who
collected it, whereas the TUH data is relatively foreign to them
and could have led to less accurate labelling on their end. It
also provides us a better representation of data collected by
Indian hospitals as compared to the TUH Data.

Following is a brief description of the above mentioned
datasets:

TUH EEG Abnormal Corpus: It has 1488 abnormal and
1529 normal EEG sessions. For the ease of the evaluation
of automated systems, it has been further divided into a
train set (1361 abnormal/1379 normal samples), and a test
set (127 abnormal/150 normal samples). We used a subset of
the abnormal sessions, comprising 21 files for the model, as
abnormal recordings have both normal and abnormal segments
in the same file. The entire corpus is approximately 25,200
one-second segments.

• Number of Channels: 24-36 channels
• Display Montage: Referencial
• Filters applied: None - Raw Data
Manipal Hospitals Corpus: This corpus contains a total of

14 files. Each file is 20-120 minutes in length containing
annotations for various classes. After segmentation, the entire
corpus comprises 28,000 one-second segments.

• Number of Channels: 21 channels

• Display Montage: Bipolar
• Filters applied: 1 Hz High Pass Filter, 70Hz Low Pass

Filter

IV. PROPOSED METHODOLOGY

The implementation is broken down into 3 modules namely,
• Preprocessing
• Feature Extraction and Feature Elimination
• Classification and Annotation

The entire pipeline of execution is explained in Fig.II. The
first objective of our work was to find the best combination
of signal decomposition, feature elimination and classification
algorithms which give us the best performance metrics. Our
Classification module, instead of classifying the entire EEG as
either normal or abnormal, classifies each one second segment
into various classes. This requires our dataset to have labels
for each segment. Professionals at Manipal Hospitals manually
labelled their own inhouse data as well as the TUH Corpus.

As the TUH Corpus was not very populated with different
kinds of abnormalities, the annotation labels were restricted
to spikes, slow waves and normal wave patterns. Manipal
Hospitals, on the other hand, had a very rich dataset and
therefore we could include many more labels; the first set was
related to sleep characteristics: POSTS or Positive Occipital
Sharp Transients of Sleep, Vertex waves and Spindles. Sleep
characteristics play a major role as the diagnosis of normal vs
abnormal waves varies with respect to the sleep state of the
patient. Second set of labels were related to artifacts. Despite
passing the EEG through low-pass and high-pass filters, many
artifacts remain that may lead to misinterpretations [12], [13].
These labels include: ECG artifact, eye open and eye close
artifacts. The last set of labels contained the abnormal wave
patterns: Spikes and Slow waves. Including the Normal label,
this makes a total of 9 labels compared to the 3 labels for the
TUH data.

A. Preprocessing

For the preprocessing module, we applied low-pass and
high pass filters of 70Hz and 1Hz [11], [19] respectively to
the entire EEG file. We segmented our EEG into 1 second
segments [8], [10] for more localized and accurate results, as
abnormalities like spikes occur for a time period of 70-200
milliseconds.

As some of the channels in the data were not explicitly EEG
channels, to reduce noise in our data [16], we eliminated the
following channels: ECG/EKG, Photic Stimulation and EMG.

As the occurrence of abnormal segments in an abnormal
EEG is very sparse when compared to normal segments,
we were left with an imbalanced dataset. To negate this,
we employed undersampling, where the data samples in the
majority labels are reduced. This was implemented using One-
Sided Selection (OSS), which is a combination of Tomek
Links and Condensed Nearest Neighbor (CNN) methods of
undersampling [17]. Tomek links are points on the boundary
of the classes present in majority which are randomly selected



Fig. 2. Proposed Architecture for EEG Classification

and removed. CNN then removes points of the majority class
that are not close to the class boundary.

B. Signal Decomposition

As EEG data is non-stationary and non-linear, decompo-
sition methods like Fourier Transform and wavelet decom-
position do not perform well [8]. Furthermore, the above
mentioned techniques do not provide accurate time-frequency
representations of the original data owing to the Heisenberg
uncertainty principle [17]. Hence we have adopted two ap-
proaches for signal decomposition: Empirical Mode Decompo-
sition (EMD) and Empirical Wavelet Transform (EWT) [18].
These are used to decompose each channel in every segment
into modes/IMFs. The process for signal decomposition per
channel for every segment is outlined in Fig.III.

Fig. 3. Feature Extraction per Segment of an EEG

1) Empirical Mode Decomposition (EMD) [1], [2], [19]:
EMD is an adaptive analysis method used specifically for
temporal data to process signals that are non-linear and non-
stationary. EMD breaks the original signal into a specified
number of Intrinsic Mode Functions (IMFs) without leaving
the time domain. The decomposition is as follows [20]:

I(n) =

M∑
m=1

IMFm(n) +ResM (n) (1)

Here, I represents the original signal and Res represents the
residue for the Mth IMF.

2) Empirical Wavelet Transform (EWT) [21], [22]: EWT
adapts some of the wavelet formalisations by designing
wavelet filter banks. This is followed by performing adaptive
decomposition on a signal and splitting it into a specified
number of modes. In contrast to traditional wavelet transforms,
the support of the filters used in EWT are derived from the
spectral distribution of the signal.

Fig. 4. [27] EWT basis construction

The wavelets in EWT are determined by one low pass
filter (that is shown in Fig.IV as LPF) ϕn(ω) that corresponds
to the approximation and N-1 band pass filters (that are
shown in Fig.IV as BPF) ϕn(ω) that correspond to the details
components [27].

We set the number of modes/IMFs as 7 after experimenta-
tion with different values. Signal decomposition is applied on
every channel in a segment. If an EEG is 20 minutes long,
with N channels (varies with the dataset), there will be 20*60
segments, each with N channels. The number of modes/IMFs
per segment will then be: N*7.

C. Feature Extraction

The modes/IMFs that were extracted using the decompo-
sition methods were subjected to feature extraction, where
11 spectral features were extracted [6], [18], [23], [24] per
mode/IMF. The features extracted were: AM and BM band-
widths, Spectral Entropy, Spectral Power, Frequency Centroid,
Peak Amplitude, Peak Frequency, Skew, Kurtosis, Hjorth
Mobility and Hjorth Complexity. This makes the number of
features per segment: N*7*11. All the features extracted from
each decomposed channel per segment were flattened to form
a one dimensional array as outlined in Fig.III. These features
were then normalised using Standard Scalar (which has zero
mean and standard deviation equal to one [12], [18]) as these
features have a very wide range of values.

D. Feature Elimination

Extracting features per mode/IMF resulted in an explosion
of the dimensions of our dataset. The total features per segment
is in the order of N*7*11 per segment, where N lies between
18-32. Therefore, we performed feature elimination, where we
tested SVC-RFE and Fisher Score [18]. We chose the number
of features to be selected using a heuristic: 20*N [18].



1) Support Vector Classifier - Recursive Feature Elimina-
tion (SVC-RFE) [3]: RFE employs the process of backward
elimination, which sequentially reduces the number of features
considered. It selects a subset of the features and evaluates it
by training it on an estimator, in our case, SVC. The main goal
is to search the entire feature space to find the most optimal
subset.

2) Fisher-Score based elimination [4]: Fisher Score works
by assigning a score according to the Fisher criterion. The
main aim of the fisher score is to maximize the distance
between data points belonging to different classes while min-
imizing the distance between the data points belonging to
the same class. For the ith feature, the fischer score (Si) is
calculated as follows [27]:

Si =

∑
nj(µij − µi)

2∑
nj ∗ ρi2j

(2)

Here, nj is the number of samples in the jth class, µij is the
mean of the ith feature in the jth class, µi is the mean of the
ith feature and ρij is the variance of the ith feature in the jth

class.

E. Classification

After subjecting the data to feature elimination we are left
with a set of selected features and labels that are ready to
be sent to the classifier. We have considered the following
models as they offer a range of different algorithms [18].

1) k - Nearest Neighbors (k-NN) [3], [5],
[22]: Parameters: k = 3, Weights = Uniform,
Algorithm = Auto, Metric = Minkowski distance.

2) Linear Support Vector Machine (Linear SVM)
[3], [10], [22]: Parameters: C (regularization
parameter) = 0.1, Gamma = 1, Class Weight = None.

3) Radial Basis Function Support Vector Machine
(RBF-SVM) [3], [10], [22]: Parameters: C (regularization
parameter) = 1, Gamma = scale, Class Weight = None.

4) XGBoost: XGBoost is an algorithm that has recently
been dominating machine learning applications with
structured data. It is a decision tree based ensemble
model that uses a gradient boosting framework [9].
Parameters: booster = gbtree, num feature = automatically
set, max depth = 6, gamma = 0, lambda (L2 -
regularization) = 1, alpha (L1 - regularization) = 0.

5) Multi Layer Perceptron (MLP) [3], [11], [26]: Pa-
rameters: activation = ReLU, alpha (regularization) = 0.05,
Learning Rate = adaptive, solver = adam, hidden layer sizes
= 100.

Grid search was employed for both MLP and SVM as they
were our best performing models in order to find the optimised
parameters.

V. RESULTS AND DISCUSSION

The first phase of our work was to find the best combina-
tion of decomposition, feature elimination and classification
methods. For decomposition, EMD and EWT gave similar
performances, however, EWT was chosen as EMD was more
computationally expensive [18]. With respect to the feature
elimination step, SVC-RFE was chosen as it was outperform-
ing Fisher Score for both datasets across all classifiers. The
performance metrics that we used to assess the models were
accuracy, precision, recall, specificity and F-Score [7], [18].

These results were obtained after performing 10 fold Cross-
Validation [10] on each model, and the mean of each metric
over the 10-folds was reported.

The results of SVC-RFE feature elimination for Manipal
Hospitals Data and TUH Data for each of the different clas-
sifiers are illustrated in Table I and Table II and respectively.

The combination of EWT for signal decomposition, SVC-
RFE for feature elimination and Linear SVM for classification,
gave us the best metrics, which we finalised as our pipeline.

Table I illustrates the results we obtained for classification
of the Manipal Hospitals dataset on the labels: Vertex waves,
POSTS, Spindles, ECG artifact, Eyes open, Eyes closed,
Spikes, Slowing and Normal, per segment for various clas-
sification models. Linear SVM performed the best out of all
the models with accuracy, precision, recall and specificity of
90.78%, 89.56%, 89.05% and 98.86% respectively.

Table II illustrates the results we obtained for classification
of the TUH dataset on the labels: Spikes, Slowing and Normal
per segment for various classification models. Linear SVM
performed the best out of all the models with accuracy,
precision, recall and specificity of 88.48%, 87.35%, 84.21%
and 93.13% respectively.

It is observed that the specificity, which measures the
ability of the model to correctly identify normal segments,
was overall very high. This indicates that the models have
classified majority of the normal segments correctly and the
segments labelled as abnormal contain only abnormalities,
thereby saving the doctors a lot of time during analysis.

According to our literature survey, there is a lack of research
on classification of individual segments of EEGs. All the
papers involve classification of the entire EEGs as normal or
abnormal. Our models classify individual segments of EEGs
into various classes, as opposed to this binary classification.
In order to perform a comparison, we have compared our
results with papers that have done an overall classification of
entire EEGs using similar methods of signal decomposition
and feature extraction.

Reference [9] reported an accuracy of 87.68%, recall of
83.3% and specificity of 91.33% using their CatBoost model
for the classification of the entire EEG. Our Linear-SVM
model outperforms their model on a segment level classifica-
tion using the same dataset as shown in Table II . We achieved
better results on our Manipal dataset as shown in Table I.

Reference [11] reported accuracies for binary classification
using TUH dataset employing both feature based models and



TABLE I
PERFORMANCE OF DIFFERENT CLASSIFICATION MODELS USING SVC-RFE ON MANIPAL HOSPITALS DATA

Classification Model Accuracy(%) Precision(%) Recall(%) Specificity(%) F-Score(%)
Linear SVM 90.78 89.56 89.05 98.86 88.93
MLP 87.78 86.06 85.30 98.48 85.01
RBF-SVM 81.97 79.30 77.72 97.71 76.55
XGBoost 81.05 77.52 77.19 97.64 76.60
k-NN 73.80 72.88 67.97 96.65 70.34

TABLE II
PERFORMANCE OF DIFFERENT CLASSIFICATION MODELS USING SVC-RFE ON TUH DATA

Classification Model Accuracy(%) Precision(%) Recall(%) Specificity(%) F-Score(%)
Linear SVM 88.48 87.35 84.21 93.13 85.33
MLP 80.33 77.70 73.62 88.21 74.89
RBF-SVM 73.41 76.77 56.90 82.24 65.36
XGBoost 75.09 76.22 61.58 83.75 68.12
k-NN 62.07 55.40 55.10 79.02 53.17

artificial neural network models in the range of 81 - 86%. Our
Linear SVM model for TUH data showed 88.48% accuracy,
improving on this state-of-the-art model by at least 2%.

Reference [27] in their study reported an accuracy of
89.13%, recall of 80.16%, and specificity of 96.67% for
binary classification on TUH data using their best model
which uses features from different temporal segments of the
EEG signal. They have pre-trained their model on private
data before subjecting their model to TUH data. Hence, we
can compare these results with the results we have obtained
from our private data. In this aspect, our Linear SVM model,
with accuracy, recall and specificity of 90.78%, 89.05%
and 98.86% respectively out-performs all of their metrics.

These are the results of our final annotation task. Fig.V
shows Eyes open artifacts and Eyes closed artifacts, Fig.VI
represents the sleep characteristics: Spindles and Fig.VII and
Fig.VIII illustrate the flagging of Spike and Slow waves
abnormalities in the EEG after annotation, respectively.

Fig. 5. EEG with flagged eyes open and closed artifacts

VI. CONCLUSION

Electroencephalography or EEGs are used by medical pro-
fessionals to diagnose diseases or abnormalities related to the

Fig. 6. EEG with flagged sleep spindles

Fig. 7. EEG with flagged spike

brain. Manually analysing these EEG recordings, which can
be as long as multiple hours, is a cumbersome process and
prone to misdiagnosis as it is very subjective and depends
on the individual reading it. Thus automated flagging of
segments of EEGs that seem abnormal is very beneficial to
the professionals. We proposed a pipeline for this classification
consisting of segmentation, followed by signal decomposition
using Empirical Wavelet Transform (EWT), Feature extrac-
tion, Feature elimination using Recursive Feature Elimination



Fig. 8. EEG with flagged slow waves

(SVC-RFE), followed by classification using Linear Support
Vector Machine. This pipeline was finalised after experiment-
ing with multiple signal decomposition, feature elimination
and classification methods and models.

We obtained results on an open sourced dataset, from Tem-
ple University Hospital, and a private dataset, from Manipal
Hospitals. For the TUH Dataset, the accuracy, precision, recall
and specificity obtained was 88.48%, 87.35%, 84.21% and
93.13% respectively. For the Manipal dataset the accuracy,
precision, recall and specificity obtained was 90.78%, 89.56%,
89.05% and 98.86% respectively. Our models when compared
to state-of-the-art models showed better performance. Our
work illustrates how technology can aid medical professionals
by helping eliminate human error and reducing review time
drastically.

VII. FUTURE WORK

Our implementation and results obtained are dependent on
the medical professionals’ experience and expertise to manu-
ally label the EEG datasets. Currently, there are no publicly
available standardised datasets with individual segments of
EEGs classified into multiple classes. An open sourced dataset
for the same can be made available.

Our study focuses on two signal decomposition methods,
two feature elimination methods and five classification meth-
ods. There are many more state-of-the-art signal decompo-
sition methods and machine learning models like CatBoost
and LightGBM that can be explored, which could potentially
improve the performance of our model.

Our model currently only focuses on highlighting the seg-
ments of the EEG which require attention from the diagnosti-
cian. Further studies can extrapolate the results of our model
to make inferences about disorders as well.

Our models are trained separately for each of our datasets.
Future studies could explore the cross data functionality of
both the models.
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