
Report on

“Mini-Compiler for Javascript ”

Submitted in partial fulfillment of the requirements for Sem VI

Compiler Design Laboratory

Bachelor of Technology
in

Computer Science & Engineering

Submitted by:
Raksha Ramesh

Swanuja Maslekar
Vidish Raj

PES1201800345
PES1201800369
PES1201800223

Under the guidance of

Madhura V
Assistant Professor

PES University, Bengaluru

January – May 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING

PES UNIVERSITY
(Established under Karnataka Act No. 16 of 2013)

100ft Ring Road, Bengaluru – 560 085, Karnataka, India

TABLE OF CONTENTS

Chapter
No.

Title Page No.

1. INTRODUCTION (Mini-Compiler is built for which language.
Provide sample input and output of your project)

03

2. ARCHITECTURE OF LANGUAGE:
● What all have you handled in terms of syntax and

semantics for the chosen language.

03

3. LITERATURE SURVEY (if any paper referred or link used) 03

4. CONTEXT FREE GRAMMAR (which you used to implement
your project)

03

5. DESIGN STRATEGY (used to implement the following)
● SYMBOL TABLE CREATION
● INTERMEDIATE CODE GENERATION
● CODE OPTIMIZATION
● ERROR HANDLING - strategies and solutions used in

your Mini-Compiler implementation (in its scanner,
parser, semantic analyzer, and code generator).

04

6. IMPLEMENTATION DETAILS (TOOL AND DATA
STRUCTURES USED in order to implement the following):

● SYMBOL TABLE CREATION
● INTERMEDIATE CODE GENERATION
● CODE OPTIMIZATION
● ERROR HANDLING - strategies and solutions used in

your Mini-Compiler implementation (in its scanner,
parser, semantic analyzer, and code generator).

● Provide instructions on how to build and run your
program.

04

7. RESULTS AND possible shortcomings of your Mini-Compiler 06

8. SNAPSHOTS (of different outputs) 06

9. CONCLUSIONS 11

10. FURTHER ENHANCEMENTS 11

REFERENCES/BIBLIOGRAPHY 12

2

Introduction

The mini-compiler was built for Javascript. The project was split into two phases -

phase1 and phase2. In phase1, the implementation was focussed on the lexical

phase, syntax phase and semantic phase. In this phase of the project, regular

grammar was used to define rules and generate tokens. Comment removal, data

conversion and other small details were handled. The symbol table was generated

to keep track of identifiers in the code, along with the line used, scope, etc.

(refer to snapshots below).

The second phase focussed on intermediate code generation and optimization. It

involved evaluation of expression and updation of the symbol table, dead code

elimination, common subexpression elimination and so on. Various different test

cases were assessed on the compiler, screenshots of which can be found below.

Architecture of language

The syntax and semantics that were handled in our javascript compiler were:

● Conversion to int and real valued numerical data and other necessary

conversions.

● All operators and punctuation characters are handled by the compiler.

● All identifiers are tokenized and printed on the symbol table along with

other details like the line used, scope, value,etc.

● Comments were stripped off, non-matching tokens are reported and

identifier length was restricted.

● Verification of tokens to form a sentence and construction of the abstract

tree.

● Error handling and recovery was done.

● Other semantics like type checking, variable declaration , loops and errors

were handled.

● Three address code was generated and dead code/unreachable code is

eliminated.

● Optimization was performed on the three address code that was generated.

Context free grammar

The context free grammar used to implement the tokenization of the JavaScript

input was as follows:

start: seqOfStmts;
seqOfStmts: statement seqOfStmts | statement;
anyOperator: T_LCG | T_LOP | T_OP1 | T_OP2 | T_OP3;
terminator: ';' | '\n';
statement: declare terminator|expr terminator|for |if | while|
'{'{scope[stop++]=sid++;} seqOfStmts '}' {stop--;} | T_CONSOLE
'(' T_STR ')' | T_DOCUMENT '(' T_STR ')' ;
id: T_ID {mkentr(0,identifier,scope[stop-1]);printf("updating
:%s scope:%d\n",identifier,scope[stop-1]);};
idV: T_ID {chkentr(identifier);printf("checking :%s
scope:%d\n",identifier,scope[stop-1]);};

3

assign: '=' | T_SHA;
expr: id assign expr | value | ;
value: unit anyOperator value |unit;
unit: idV | T_OP4 idV | idV T_OP4 | T_STR
{add_type_name(identifier, 1);}| T_NUM
{add_type_name(identifier, 0);}| '(' list ')'| func | '[' list
']';
func: idV '(' list ')';
list: expr ',' list | expr;
declare: T_VAR mulDecl | T_LET mulDecl;
mulDecl: id |id ',' mulDecl|id '=' expr|id '=' expr ','
mulDecl;
varOperator: T_VAR | T_LET | ;
for: T_FOR '(' varOperator list ';' list ';' list ')'
statement;
if: T_IF '(' expr ')' statement ifelse;
while: T_WHILE '(' expr ')' statement;
ifelse: T_ELSE statement|;

Design details

Symbol table:

The symbol table was designed keeping in mind the syntax of Javascript. The

generated tokens had to be represented in the symbol table along with its

important attributes such as name, scope, type, value, declared line and the last

line used. The symbol table was designed to print along with the strings and the

numbers in the input. In phase1, all the functions related to the creation of the

symbol table, making an entry, checking an entry, printing the symbol table and

so on were entered in a file named sbtls.h.

Intermediate Code Generation:

The parser takes an input from the input file and generates an icg.txt which contains the

intermediate code generated in quadruple format. It employs various data structures to

define the structure of each variable and facilitates the storing of the abstract syntax

tree and the intermediate code generated for all the variables in the LHS of the grammar

rules. This is done with the help of production rules.

Error handling:

The scanner was designed to handle various different errors. Unterminated

comments would be reported. Lexical errors like lengthy identifiers, improper

strings and invalid characters would be reported as well.

Implementation details

Symbol table-:

Context free grammar was used to define syntax rules of javascript. The tokens

were generated based on these rules. The symbol table implementation was done

while keeping the design in mind. The symbol table was implemented using linked

lists. A structure was composed with integer values for the type, scope, line used

4

and line it was declared on. A pointer to the structure was kept to implement a

linked list to hold all the token values and data. Three separate linked lists were

created to hold identifiers, strings and numerical values. The linked list was

traversed to print the table in the order variables were encountered. Separate

counters were used to keep track of the scope of the variables.

Intermediate Code Generation:

For the implementation of the intermediate code generation, the same grammar

used in the previous phase was modified to include production rules.

A couple of data structures were defined to make the storing of the outputs easy.

The following were the data structures used:

struct {char *code,*ast;int next;} stt;
struct {char *code,*ast;int idn;} eq;
struct {int dt[4];} dt;
struct {int idn,off;char *code,*ast;} ls;

The LHS of the grammar rules were assigned to their respective data structure:

%type<stt> seq statement for if while
%type<eq> expr unit defn anyopl anyoph rhsl rhsh
%type<ls> list
%type<dt> lhs lhsv edt

Production rules were added for each grammar rule so that seq.code contains

the required ICG in Quadruple format.

Each production rule makes sure that the LHS of the concerning grammar rule

LHS.code contains the ICG in quadruple format for that section of the code.

For example, for the grammar rule: while: T_WHILE '(' expr ')'
statement;
while.code will have the quadruple code for the entire while loop.

Here is the actual code:

while: T_WHILE edt '(' expr ')'
{$2.dt[0]=lbl++;$2.dt[1]=lbl++;}

statement {char *a,*b,*c;
sprintf(bbuf,"label\t\t\t \t\t\t

\t\t\tl%d\n",$2.dt[0]);
a = ap(strdup(bbuf),$4.code);
sprintf(bbuf,"iffalse\t\t\tt%d\t\t\t

\t\t\tl%d\n",$4.idn,$2.dt[1]);
b=ap(strdup(bbuf),$7.code);
sprintf(bbuf,"goto\t\t\t \t\t\t

\t\t\tl%d\nlabel\t\t\t \t\t\t \t\t\tl%d\n",$2.dt[0],$2.dt[1]);
$$.code=ap3(a,b,strdup(bbuf));
a=ap3(strdup("while("),$4.ast,strdup(")"));
$$.ast=ap(a,$7.ast);
};

The ast is also appended similarly.

5

[Note: ap() and ap3() are user defined string manipulation functions that

concatenate 2 and 3 string arguments respectively]

Error handling:

If there is a syntax error, the parser will stop at that line. However, small errors

like missing semicolon and extra \n are ignored by the parser and it continues

parsing.

Result and possible shortcomings

The input files that were parsed by our compiler generated tokens and symbol

table as planned. The intermediate code generation and error handling was as

desired. The compiler passed the test cases that it was tested against.

The compiler isn’t capable of handling other loops like switch and for.

Screenshots

Phase 1

1. Screenshot showing simple input and symbol table generation

2. Sample input sent

6

Symbol table generated

Tokens generated

7

Phase2

Sample input

Code generated

8

Code Optimisation

Sample input(Input needs to be in quadruple form)

The first screenshot shows the original text file that contains the input in

quadruple form.

The icg and the quadruple form of the input is printed along with the output using

a function included with the functions for optimisation technique. This has been

illustrated in the second screenshot.

9

10

Output

i) Constant propagation (Please refer to the first 10 lines of the input)

ii)Constant Folding (please refer to the next 12 lines of the input)

11

iii) Strength Reduction (Please refer to the next 6 lines of the input)

iv) Common Subexpression Elimination (Please refer to the last 8 lines)

Conclusion

In conclusion, we learnt to build a mini-compiler, specifically for JavaScript for

our project. We were able to apply all the concepts we learnt in theory classes to

the project and hence got a deeper understanding of it. We familiarize ourselves

with the working of Lex and Yacc tools. We understood concepts such as Context

Free Grammar, Intermediate Code Generation, code optimization techniques and

the like through implementation.

Further Enhancements

Further enhancements to this project can be performed. More constructs, such as

for, can be included. Scripts can be written to compile function definitions,

function calls and so on. More advanced techniques on error handling can be

implemented as well.

12

References/ Bibliography

1. PESU CSE - Compiler Design Course - USE18CS351 - Class material

2. https://github.com/OmkarMetri/JavaScript-Mini-Compiler/tree/master/To

kenization - A GitHub repo

3. https://github.com/maierfelix/mini-js - A GitHub repo

4. https://github.com/RaniaBenchouiekh/mini-python-compiler - Github repo

13

