PES

UNIVERSITY

PROJECT REPORT ON LEXICAL SIMPLIFICATION

A Project Work Submitted in Partial Fulfillment of the requirements for
The Course

ALGORITHMS FOR INTELLIGENCE WEB AND INFORMATION
RETRIEVAL

By

SHREYA PRABHU - PES1201800128
RAGHAYV ROY - PES1201800342
RAKSHA RAMESH - PES1201800345

Under the supervision of
Prof. Nagegowda K S
Associate Professor
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
PES UNIVERSITY

RR CAMPUS



TABLE OF CONTENTS:

1. INTRODUCTION............
2. OVERVIEW OF THE PROJECT
3. ALGORITHM PSEUDO CODE
4. RESULTS AND DISCUSSION

5. CONCLUSION AND FUTURE SCOPE

6. REFERENCE & SOURCES

13

15

16



1.INTRODUCTION

In our daily life, we come across a lot of sentences that are so convoluted
that it becomes difficult to comprehend. This is where text simplification
comes into the picture.

Text simplification is an operation used in natural language processing to
modify, enhance, classify or otherwise process an existing corpus of
human-readable text in such a way that the grammar and structure of the
prose is greatly simplified, while the underlying meaning and information
remains the same. Text simplification is an important area of research,
because natural human languages ordinarily contain large vocabularies and
complex compound constructions that are not easily processed through
automation. In terms of reducing language diversity, semantic compression
can be employed to limit and simplify a set of words used in given texts.

Text simplification is within the field of NLP, and within this field it is very
similar to other techniques, such as machine translation, monolingual
text-to-text generation, text summarization and paraphrase generation. These
fields all draw on each other for techniques and resources and many
techniques within text simplification come from these other fields. Another
very similar process is text summarization. Text simplification is different
from text summarization as the focus of text summarization is to reduce the
length and content of input. Whilst simplified texts are typically shorter, this
1s not necessarily the case and simplification may result in longer output —
especially when generating explanations. Summarization also aims at
reducing content — removing that which may be less important or redundant
while simplification focuses on making the content easier to comprehend.

As the amount of unstructured text data has exploded in recent decades, due
to the advent of the Internet, so has the need, and interest, in text
simplification research. TS is a diverse field with a number of target
audiences, each with a specific focus. One of the most prominent target
audiences for text simplification are foreign language learners, for whom
various approaches to simplifying text have been pursued, often focusing on



lexical but also sentence-level simplification. Text simplification is also of
interest to people suffering from dyslexia, and the aphasic, for whom
particularly long words and sentences, but also certain surface forms such as
specific character combinations, may pose difficulties. Application of text
simplification for those suffering from autism focuses on reducing the
amount of figurative expressions in a text or reducing syntactic complexity.
Reading beginners (both children and adults) are another group with very
particular needs, and text simplification research has tried to provide this
group with methods to reduce the amount of high-register language and
non-frequent words.

There are primarily two approaches to implement text simplification, the
extractive method and abstractive method.

The extractive approach involves creating a frequency distribution of all the
words, after preprocessing, and calculates sentence weights for each
sentence. We can summarize the original text by either selecting N number
of sentences with the highest sentence weights or by selecting all sentences
above a certain threshold sentence weight.

Abstractive Approach Abstractive text simplification involves generation of
new and novel text, which is lexically and/or syntactically simpler than the
original. Abstractive approaches have mostly focused on lexical or phrasal
substitutions for sentence-level simplification. This process focuses solely
on simplifying the vocabulary of a text, instead of additional simplification
tasks of grammatical or syntactic simplification.

Lexical substitution is the task of identifying a substitute for a word in the
context of a clause. For instance, given the following text: "After the match,
replace any remaining fluid deficit to prevent chronic dehydration
throughout the tournament", a substitute of game might be given.

The goal of Lexical Simplification is to replace complex words (typically
words that are used less often in language and are therefore less familiar to
readers) with their simpler synonyms, without infringing the grammaticality
and changing the meaning of the text.



Another approach to text simplification apart from lexical simplification is
syntactic simplification. Syntactic text simplification approaches modify a
sentence’s structure in order to make it easier to comprehend, whereas
lexical text simplification approaches mainly apply localised modifications
to words based on their local lexical context (often a sentence).

The aim of our project is to use Lexical substitution to simplify text. Lexical
Simplification uses contextual word substitution for simplifying text and
therefore making it more comprehensible and easier to understand.

OVERVIEVW OF THE PROJECT

The project was implemented in Python using the following libraries:
pandas, ujson, nltk, gensim. The most important of which was nltk.

The Natural Language Toolkit, or more commonly called nltk, is a suite of
libraries and programs for symbolic and statistical natural language
processing for English written in the Python programming language.

From this library, the following modules were used for the implementation
of our project:

The Brown University Standard Corpus of Present-Day American
English (or just Brown Corpus) is an electronic collection of text samples of
American English, the first major structured corpus of varied genres. This
corpus first set the bar for the scientific study of the frequency and
distribution of word categories in everyday language use.

WordNet is a large lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms (synsets), each
expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations.

The implementation comprises of the following steps:
. Input corpus:

In this step, the input text is accepted from the user for simplification.



. Create the Frequency Corpus:

a. A frequency dictionary generated from NLTK’s brown corpus that
contains every word and the number of occurrences.

b. A bigram frequency dictionary that contains all bigram combinations
from the brown corpus and their frequency of occurrence.

. Perform text preprocessing:

After accepting input, the pre-processing of the input text is being
performed. In this phase, the main purpose is to perform tokenization of the
sentence. In tokenization sentence is parsed into separate words

. Perform POS Tagging:

In this step, the parts-of-speech of the tokenized words is identified. Each
word is assigned with a tag containing abbreviations of parts-of-speech.
Depending on parts-of-speech the list is separated into a list of Adverbs,
Adjectives, Nouns.

. Complex words identification:

In this step, the lists created in the previous step are merged. The words in
the merged list are compared in sentences to find the position of each word.
A complete set of complex words and their position in the sentence is
created.

. Suitable Synonym identification:

This step focuses on finding the suitable simple synonym for complex
words. Here, synset is used for synonym identification. Alternatives are then
stored and kept ready to perform replacement according to their position.
The alternative candidates are also converted to the correct tense form
according to the POS tag.

. Perform synonym replacement:

After finding synonyms of complex words, the replacement of words in
sentences takes place depending upon the relative position of the complex
word.



The actual execution of the project comprised of the following steps:

1.

The input sentences are tokenized.

2. The frequency of the 40 percentile of the most frequent words in the input is

set as the threshold.

. Any word whose frequency is lesser than the threshold is considered

'difficult' and kept in the list 'difficultWords'.
For each word in difficultWords(after checking whether the word can be
replaced (based on the part of speech embodies), a set of replacement
candidates is chosen from Wordnet along with their frequency in the Brown
Corpus.
For each word in difficultWords, from the set of candidates, a subset best
candidates i1s made with only the candidates who fit in the same context of
the difficultWord:
- If the original text is X-difficultWord-Y, bigrams X-candidate and
candidate-Y should exist.
- If the bigrams exist, that candidate is put inside best candidates for
the difficultWord along with its corresponding bigram score(average
of the 2 sub-bigram frequencies in the Brown corpus).

Replacement Strategies (models):

l.

2.

For each word in difficultWords, out of the best candidates list, the
candidate with the highest bigram score is chosen as the replacement .
For each word in difficultWords, out of the best candidates list, the
candidate with the highest frequency in the Brown Corpus after checking
whether the word fits the context (bigrams X-candidate and candidate-Y
must exist).

. For each word 1n difficultWords, out of the best candidates list, the

candidate with the highest frequency in the Brown Corpus is chosen as
replacement.



A diagrammatic view of the process:

Complex Sentence Simplified Sentence

The ominous clouds engulfed the hill. The gloomy clouds covered the hill

A

A 4

Complex Word Identification Substitution Ranking

ominous: #1 gloomy, #2 scary

The ominous clouds engulfed the hill. engu”ed: #1 covered' #2 enve|0ped

S N

¥

A 4

Substitution Generation Substitution Selection
ominous: threatening, scary, gloomy ominous: scary, gloomy
engulfed: covered, enveloped, submerged engulfed: covered, enveloped




3. ALGORITHM PSEUDO CODE

Algorithm 1: Generaie Frequency Dictionary

Result: Frequency Dictionary
initialize freqDict;
for sentence in Brown corpus sentences do
for word in sentence do
| fregDict[word] +=1;
end
end
return fregDict;

Algorithm 2: Find Bigram Score

Result: Bigram Score
initialize lefiWord, rightWord, freqDict and replacement;
score + 0 if 'leftWord + replacement’ in fregDict then
| score += freqDict[ " lefiWord + replacement’]
end
il 'rightWord + replacement’ in fregDict then
| score += freqDict| 'rightWord + replacement’]
end
return score;

Algorithm 3: Lexical Simplification

Result: Lexically simplified sentence
tokenize sentences;
find difficultWords:
for word in difficultWords do
replacements « [indReplacemends() for candidate in replacements do
| bestCandidates « findBesiCandidates() end
end
return replacedSentences;




CODE SNIPPETS:

Function for Generating frequency dictionary:

& text_simplification.py M X B corpus_frequency.csv steps.txt M inputl.xt M input2.txt M output10.txt M out B T 0 O O (
LexicalTextSimplification-test > @ text simplification.py > %2 Simplifier > @ _init

14 def generate_brown_frequency_dictionary():

15’ """ Create frequency distribution of BROWN corpora. """

16 brown_frequency_dictionary = FregDist()

17 for sentence in brown.sents():

18 for word in sentence:

19 brown_frequency_dictionary[word] += 1

20

21 corpus_frequency_distribution = pd.DataFrame(list(brown_frequency_dictionary.items()), columns = ["Word
22 corpus_frequency_distribution.sort_values("Frequency")

23 corpus_frequency_distribution.to_csv('corpus_frequency.csv')

24 return brown_frequency_dictionary

ac

Function for checking if the word fits context a function to return bigram
score:

2o

39 def check_if_word_fits_the_context(self, context, token, replacement):

40 """ Check if bigram with the replacement exists.

41 Check for word preceeding and succeeding the replacement in the bigram dictionary. """

42

43 if len(context) ==

44 if (context[®] + ' ' + replacement).lower() in self.bigrams_brown_frequency_dictionary.keys() o
45 return True

46 else:

a7 return False

48 else:

49 return False

58

51 def return_bigram_score(self, context, token, replacement):

52 """ Return the averaged frequency of left- and right-context bigram. """

53 score = @

54 if (context[@] + ' ' + replacement).lower() in self.bigrams_brown_frequency_dictionary.keys():
55 score += self.bigrams_brown_frequency_dictionary[(context[@] + ' ' + replacement).lower()]
56 if (replacement + ' ' + context[2]).lower() in self.bigrams_brown_frequency_dictionary.keys():
57 score += self.bigrams_brown_frequency_dictionary[(replacement + ' ' + context[2]).lower()]
58 return score [/ 2

Function to check whether a word is replaceable:

€8 def check_if_replacable(self, word):

61 """ Check POS, we only want to replace nouns, adjectives and verbs. """

62 word_tag = pos_tag([word])

63 if 'NN' in word_tag[@][1] or '3]' in word_tag[@][1] or 'VB' in word_tag[®@][1]:
64 return True

65 else:

66 return False

a7

10



Function to convert tense of the replaced word:

9" def convert(word from, word to):

16’ """ Analyses POS tags and converts words to a desired form. """

11 if tag(word_to)[e][1] == 'VvBD':

12 converted = conjugate(word_from, ‘'past')

13 elif tag(word_to)[@][1] == 'VBN':

14 converted = conjugate(word_from, 'past’')

15 elif tag(word_to)[@][1] == 'VBZ':

16 converted = conjugate(word_from, ‘present', ‘3sg')

17 elif tag(word to)[@][1] == 'VBP':

18 converted = conjugate(word_from, 'present', ‘1sg')

19 elif tag(word_to)[@][1] == 'VB':

20 converted = conjugate(word_from, 'infinitive')

21 elif tag(word_to)[@][1] == 'NN' and tag(word_from)[@][1] == 'NNS':
22 converted = singularize(word_from)

23 elif tag(word to)[@][1] == 'NNS' and tag(word_from)[@][1] == 'NN':
24 converted = pluralize(word_from)

25 else:

26’ | ‘ converted = word_from

27 return converted

L]

The final simplification function:

94

QSI def simplify(self, input):

96 simplifiede = '*

97 simplified1l = ''

98 simplified2 = '*

99

1ee sents = sent_tokenize(input) # Split by sentences

181 ''"'Top 48 % least frequency score (rarer) words of the input corpus are taken as difficult words'''

182 top_n = int(4@/100*(len(input)))

1e3 freq_top_n = sorted(self.brown_frequency_dictionary.values(), reverse=True)[top_n - 1]

104 for sent in sents:

185 self.steps.write(sent + '\n')

106 tokens = word_tokenize(sent) # Split a sentence by words

1e7 #Store all difficult words

18 L difficultWords = [t for t in tokens if self.brown_frequency_dictionary[t] < freq_top_n]
® 111 all_options = {}

112 for difficultWord in difficultWords:

113 replacement_candidate = {}

114

115 ''""Collect WordNet synonyms for each difficult word,

116 along with their brown corpus frequency.'''

117

118 for option in self.generate_wordnet_candidates(difficulthord):

119 replacement_candidate[option] = self.brown_frequency dictionary.freq(option)

120

121 *''store all these candidates in all_options "'

122

123 all_options[difficultWord] = replacement_candidate

124 all options_list = [(k, v) for k, v in all options.items()]

125 self.steps.write('all_options:"')

126 self.steps.write(str(all_options_list) + "\n')

2izing

128 ''" populate best candidates dictionary if it is a bigram, and add bigram score '’

129 best_candidates = {}

130 for token_id in range(len(tokens)):

131 token = tokens[token_id]

132

133 best_candidates[token] = {}

11



128
129
130
131
13
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
15e

145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

160
161
162
163
164
165
166
167
168
169
17@
171
172
173
174
175
176
177
178
179
180

101

Populate best candidates dictionary if it is a bigram, and add bigram score
best_candidates = {}

for token_id in range(len(tokens)):

token = tokens[token_id]

best_candidates[token] = {}
if token in all_options:
| for opt in all_options[token]:
if token_id != @ and token_id != len(tokens): # if not the first or the last word ir
if self.check_if_word_fits_the_context(tokens[token_id - 1:token_id + 2], token,

best_candidates[token][opt] = self.return_bigram_score(tokens[token_id - l:tJ

# self.steps.write( 'best_candidates:' + str(best_candidates) + '\n’)
best_candidates_list = [(k, v) for k, v in best_candidates.items()]
self.steps.write('best_candidates:')
self.steps.write(str(best_candidates_list) + '\n'ﬂ

‘' 'Generate stepse - take the word with the highest bigram score'"’
output = []
for token in tokens:
if token in best_candidates:
if token.istitle() is False and best_candidates[token] != {}:
i # Choose the one with the highest bigram score
' ''Generate steps@ - take the word with the highest bigram score''’
output = []
for token in tokens:
if token in best_candidates:
if token.istitle() is False and best_candidates[token] != {}:
# Choose the one with the highest bigram score
best = max(best_candidates[token], key=lambda i: best_candidates[token][i])
self.steps.write('best v1:' + str(token) + ' -> ' + str(best) + '\n')
output.append(best)
else:
output.append(token)
else:
output.append(token)

simplifiede += ' '.join(output)
' ''Generate stepsl - take the word with the highest frequency + check the context''’
output = []
for token_id in range(len(tokens)):
token = tokens[token_id]
if token in all_options and len(all_options[token]) > @ and token in difficultWords and token.
if token_id != @ and token_id != len(tokens):
# Choose most frequent and check if fits the context
best_filtered = {word: all_options[token][word] for word in all_options[token] if

'''Generate stepsl - take the word with the highest frequency + check the context'"'’
output = []
for token_id in range(len(tokens)):
token = tokens[token_id] -
if token in all_options and len(all_options[token]) > @ and token in difficultWords and token.::
if token_id != @ and token_id != len(tokens):
# Choose most frequent and check if fits the context
best_filtered = {word: all_options[token][word] for word in all_options[token] if
| self.check_if_word_fits_the_context(tokens[token_id - 1:token_id + 2]
| and self.check_pos_tags(tokens, token_id, word)} :
if best_filtered != {}: # if not empty I
best = max(best_filtered, key=lambda i: best_filtered[i])
self.steps.write('best v2:' + str(token) + ' -> ' + str(best) + '\n")
output.append(best)
else:
output.append(token)
else:
output.append(token)
else:

output.append(token)

simplifiedl += '.join(output)

12



104
182
183
184
185
186
187
188
189
190
191
192
193
194

'''Generate steps2 - take the synonym with the highest frequency'''
output = []
for token in tokens:
# Replace word if in is difficult and a candidate was found
if token in all_options and len(all_options[token]) > @ and token in difficultWords and token.
best = max(all options[token], key=lambda i: all options[token][i])
self.steps.write('best v3:' + str(token) + ' -> ' + str(best) + '\n')
output.append(best)
else:
output.append(token)
simplified2 += ' '.join(output)

return simplified®, simplifiedl, simplified2

4. RESULTS AND DISCUSSION

For our test cases, we used three large input files that were passed to the
models. The models processed the input files and each model simplified the
input text differently.

The file steps.txt indicates all generated replacement candidates and the ones
used specifically by each of the different models.

The following is a snapshot of what the bigram frequencies look like:

LexicalTextSimplification-test > B bigrams frequency.csv
You, 2 weeks ago | 1 author (You

1| ,Bigram,Frequency

2| e,of the,74820247

3| 1,in the,53383115

4| 2,to the,30419908

5| 3,on the,25946885

6| 4,for the,20270556
7| 5,and the,19710265

8| 6,to be,19508465

9| 7,is a,17563849

10| 8,with the,16078298
11| 9,at the,15423651
12| 10,from the,13276473
13| 11,with a,12180629
14| 12,will be,12025933
15| 13,is the,11355480
16| 14,of a,11285608
17| 15,in a,10714844
18| 16,for a,10638755
19| 17,it is,10181558
20| 18,you can,9872981
21| 19,by the,9619211
22| 2@,that the,9477816
23| 21.can be.9224680

The following is an example of the steps.txt:

13




617
618
619
620
621
622
623
624
625
626
627
628
629
63@
631
632
633
634
635
636
637
638
639

Madison sought to accomplish this by demonstrating conclusively that the Acts violated the constitution
difficultWords:[ 'Madison’, 'sought', 'accomplish', 'this', ‘'demonstrating', ‘'conclusively', 'Acts', 'viol
all_options:[('Madison', {'madison': ©.8, 'james_madison': @.®, 'capital_of_wisconsin': @.@, 'president_m
best_candidates:[('Madison’', {}), ('sought', {'tried': 263772.5, 'attempted': 24020.0}), ('to', {}), ('ac
best vl:accomplish -> achieve

best vl:demonstrating -> evidence

best vl:violated -> broke

best vl:constitution -> organization

Its current messenger client is Windows Live Messenger .

difficultWords:['Its’', 'current', ‘'messenger', 'client’, 'Windows®', 'Live', 'Messenger']
all_options:[('Its', {}), ('current’, {'stream': 4.392838525928529¢-05, 'flow': 5.856051367904705e-05, 'e
best_candidates:[('Its', {}), ('current', {'flow': 779.@}), ('messenger', {}), ('client’', {'node': 5066.5
best vl:client -> customer

best v3:messenger -> courier

It comes from Stewart Grand Prix J

difficultWords:['It', 'comes', 'from', 'Stewart', 'Grand', 'Prix']

all_options:[('It', {}), ('comes', {}), ('from', {}), ('Stewart’', {'dugald_stewart’': ©.0, 'jimmy_stewart'
best_candidates:[('It', {}), ('comes', {}), ('from', {}), ('Stewart', {}), ('Grand', {'grand': 1757.0}),
difficultWords:['Cities', 'in', 'Brazil']

all_options:[('Cities', {'metropolis': 6.889472197534947e-06, 'cities': 9.128550661733805e-85, 'urban_cen
best_candidates:[('Cities', {}), ('in", {}), ('Brazil’, {}), ('.', {})]1The southern and western boundarie
difficultWords:[ 'southern', ‘western', 'boundaries’', 'are', 'based', 'continental’, 'shelf']

all options:[('southern', {'southerly’': ©.8}), ('western', {'western_sandwich': ©.8, 'horse opera': 0.0,

14



The following is how the lexically simplified sentences look:

Edit  Select View Go Run Terminal Help Vputt.txt - Lexical-Text-Simplification - Visual Studio Code

inputl.xt U X g

LexicalTextSimplification-test > data nput1.txt
1 Wider decks can be used for greater stability when transition or ramp skating .

The Alfa Romeo 164 is a automobile produced by Alfa Romeo .
The Australian Sports Medal was an award given during 2e8@@ to recognize achievements in Australian sport .
Gordon Gray June 20 , 1949 - April 12 , 1950 Harry S. Truman
Stephen Ailes January 28 , 1964 - July 1 , 1965 Lyndon B. Johnson
In electronics , a voltage divider is a tool which creates an output voltage which is proportional to an i
It declined in the 1948s as mining declined .

O~ OB WwN

Distributions are normally split into packages .
9 Its county seat is Green Cove Springs
18 Julius Caesar introduced Venus Genetrix as a goddess of motherhood and domesticity .
11 There are 104 twentv-five minute enisodes .

outD-inputl.Isen M

LexicalTextSimplification-test > evaluation outD-input1.sen
1| wider floors can be applied for large stability when conversion or storm skating .
2| The Alfa Romeo 164 is a car made by Alfa Romeo .
3| The Australian Sports Medal was an honor made during 200@ to recognize accomplishments in Australian sport
4| Gordon Gray June 2@ , 1949 - April 12 , 1950 Harry S. Truman
5| Stephen Ailes January 28 , 1964 - July 1 , 1965 Lyndon B. Johnson
6| In electronics , a voltage partition is a creature which creates an output voltage which is relative to an
7| It declined in the forties as mine declined .
8| Distributions are normally break into boxes .
9| Its county place is Green Cove Springs
el

=

Julius Caesar introduced Venus Genetrix as a soddess of maternitv and domesticitv .

In the above picture, the changes made in each sentence can be clearly seen.

CONCLUSION AND FUTURE SCOPE

In this project we implemented lexical text simplification that simplifies
complex words in a sentence based on the context it appears in. We first
chose a metric for the selection of the words that would be categorised as
“difficult”. These difficult words would then be required to be replaced. The
complex words were selected as the words whose frequency was lesser than
the 40th percentile of the entire text. For each of the difficult words, a set or
replacement candidates are chosen out of which the best candidate is chosen
based on the model employed.

The future scope of this project is to implement the part - of - speech tagger
ourselves so we have more control over the words considered as replaceable.
The performance of the model can be improved by creating our own context
reader and coming up with a separate algorithm to find replacement words
rather than using the WordNet corpus.

15



6. REFERENCE & SOURCES

l.

Nk WD

https://www.aclweb.org/anthology/W03-1602.pdf
https://www.aclweb.org/anthology/W13-4813.pdf
https://github.com/cocoxu/simplification/tree/master/data/turkcorpus
https://pypi.org/project/readability/
https://github.com/feralvam/easse
http://nlpprogress.com/english/simplification.html

Introduction to Information Retrieval - Christopher
Manning,Prabhakar Raghavan,

HinrichSchutze

16



