
PROJECT REPORT ON LEXICAL SIMPLIFICATION

A Project Work Submitted in Partial Fulfillment of the requirements for

The Course

ALGORITHMS FOR INTELLIGENCE WEB AND INFORMATION
RETRIEVAL

By

SHREYA PRABHU – PES1201800128
RAGHAV ROY – PES1201800342
RAKSHA RAMESH – PES1201800345

Under the supervision of

Prof. Nagegowda K S

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

PES UNIVERSITY

RR CAMPUS

TABLE OF CONTENTS:

1. INTRODUCTION……………………………………………… 3

2. OVERVIEW OF THE PROJECT………………………………. 5

3. ALGORITHM PSEUDO CODE……………………………….. 9

4. RESULTS AND DISCUSSION……………………………….. 13

5. CONCLUSION AND FUTURE SCOPE……………………… 15

6. REFERENCE & SOURCES………………………..………….. 16

2

1. INTRODUCTION

In our daily life, we come across a lot of sentences that are so convoluted
that it becomes difficult to comprehend. This is where text simplification
comes into the picture.

Text simplification is an operation used in natural language processing to
modify, enhance, classify or otherwise process an existing corpus of
human-readable text in such a way that the grammar and structure of the
prose is greatly simplified, while the underlying meaning and information
remains the same. Text simplification is an important area of research,
because natural human languages ordinarily contain large vocabularies and
complex compound constructions that are not easily processed through
automation. In terms of reducing language diversity, semantic compression
can be employed to limit and simplify a set of words used in given texts.

Text simplification is within the field of NLP, and within this field it is very
similar to other techniques, such as machine translation, monolingual
text-to-text generation, text summarization and paraphrase generation. These
fields all draw on each other for techniques and resources and many
techniques within text simplification come from these other fields. Another
very similar process is text summarization. Text simplification is different
from text summarization as the focus of text summarization is to reduce the
length and content of input. Whilst simplified texts are typically shorter, this
is not necessarily the case and simplification may result in longer output —
especially when generating explanations. Summarization also aims at
reducing content — removing that which may be less important or redundant
while simplification focuses on making the content easier to comprehend.

As the amount of unstructured text data has exploded in recent decades, due
to the advent of the Internet, so has the need, and interest, in text
simplification research. TS is a diverse field with a number of target
audiences, each with a specific focus. One of the most prominent target
audiences for text simplification are foreign language learners, for whom
various approaches to simplifying text have been pursued, often focusing on

3

lexical but also sentence-level simplification. Text simplification is also of
interest to people suffering from dyslexia, and the aphasic, for whom
particularly long words and sentences, but also certain surface forms such as
specific character combinations, may pose difficulties. Application of text
simplification for those suffering from autism focuses on reducing the
amount of figurative expressions in a text or reducing syntactic complexity.
Reading beginners (both children and adults) are another group with very
particular needs, and text simplification research has tried to provide this
group with methods to reduce the amount of high-register language and
non-frequent words.

There are primarily two approaches to implement text simplification, the
extractive method and abstractive method.

The extractive approach involves creating a frequency distribution of all the
words, after preprocessing, and calculates sentence weights for each
sentence. We can summarize the original text by either selecting N number
of sentences with the highest sentence weights or by selecting all sentences
above a certain threshold sentence weight.

Abstractive Approach Abstractive text simplification involves generation of
new and novel text, which is lexically and/or syntactically simpler than the
original. Abstractive approaches have mostly focused on lexical or phrasal
substitutions for sentence-level simplification. This process focuses solely
on simplifying the vocabulary of a text, instead of additional simplification
tasks of grammatical or syntactic simplification.

Lexical substitution is the task of identifying a substitute for a word in the
context of a clause. For instance, given the following text: "After the match,
replace any remaining fluid deficit to prevent chronic dehydration
throughout the tournament", a substitute of game might be given.

The goal of Lexical Simplification is to replace complex words (typically
words that are used less often in language and are therefore less familiar to
readers) with their simpler synonyms, without infringing the grammaticality
and changing the meaning of the text.

4

Another approach to text simplification apart from lexical simplification is
syntactic simplification. Syntactic text simplification approaches modify a
sentence’s structure in order to make it easier to comprehend, whereas
lexical text simplification approaches mainly apply localised modifications
to words based on their local lexical context (often a sentence).

The aim of our project is to use Lexical substitution to simplify text. Lexical
Simplification uses contextual word substitution for simplifying text and
therefore making it more comprehensible and easier to understand.

2. OVERVIEW OF THE PROJECT

The project was implemented in Python using the following libraries:
pandas, ujson, nltk, gensim. The most important of which was nltk.

The Natural Language Toolkit, or more commonly called nltk, is a suite of
libraries and programs for symbolic and statistical natural language
processing for English written in the Python programming language.

From this library, the following modules were used for the implementation
of our project:

The Brown University Standard Corpus of Present-Day American
English (or just Brown Corpus) is an electronic collection of text samples of
American English, the first major structured corpus of varied genres. This
corpus first set the bar for the scientific study of the frequency and
distribution of word categories in everyday language use.

WordNet is a large lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms (synsets), each
expressing a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations.

The implementation comprises of the following steps:
1. Input corpus:

In this step, the input text is accepted from the user for simplification.

5

2. Create the Frequency Corpus:
a. A frequency dictionary generated from NLTK’s brown corpus that

contains every word and the number of occurrences.
b. A bigram frequency dictionary that contains all bigram combinations

from the brown corpus and their frequency of occurrence.
3. Perform text preprocessing:

After accepting input, the pre-processing of the input text is being
performed. In this phase, the main purpose is to perform tokenization of the
sentence. In tokenization sentence is parsed into separate words

4. Perform POS Tagging:
In this step, the parts-of-speech of the tokenized words is identified. Each
word is assigned with a tag containing abbreviations of parts-of-speech.
Depending on parts-of-speech the list is separated into a list of Adverbs,
Adjectives, Nouns.

5. Complex words identification:
In this step, the lists created in the previous step are merged. The words in
the merged list are compared in sentences to find the position of each word.
A complete set of complex words and their position in the sentence is
created.

6. Suitable Synonym identification:
This step focuses on finding the suitable simple synonym for complex
words. Here, synset is used for synonym identification. Alternatives are then
stored and kept ready to perform replacement according to their position.
The alternative candidates are also converted to the correct tense form
according to the POS tag.

7. Perform synonym replacement:
After finding synonyms of complex words, the replacement of words in
sentences takes place depending upon the relative position of the complex
word.

6

The actual execution of the project comprised of the following steps:

1. The input sentences are tokenized.
2. The frequency of the 40 percentile of the most frequent words in the input is

set as the threshold.
3. Any word whose frequency is lesser than the threshold is considered

'difficult' and kept in the list 'difficultWords'.
4. For each word in difficultWords(after checking whether the word can be

replaced (based on the part of speech embodies), a set of replacement
candidates is chosen from Wordnet along with their frequency in the Brown
Corpus.

5. For each word in difficultWords, from the set of candidates, a subset best
candidates is made with only the candidates who fit in the same context of
the difficultWord:

- If the original text is X-difficultWord-Y, bigrams X-candidate and
candidate-Y should exist.

- If the bigrams exist, that candidate is put inside best_candidates for
the difficultWord along with its corresponding bigram score(average
of the 2 sub-bigram frequencies in the Brown corpus).

Replacement Strategies (models):

1. For each word in difficultWords, out of the best_candidates list, the
candidate with the highest bigram score is chosen as the replacement .

2. For each word in difficultWords, out of the best_candidates list, the
candidate with the highest frequency in the Brown Corpus after checking
whether the word fits the context (bigrams X-candidate and candidate-Y
must exist).

3. For each word in difficultWords, out of the best_candidates list, the
candidate with the highest frequency in the Brown Corpus is chosen as
replacement.

7

A diagrammatic view of the process:

8

3. ALGORITHM PSEUDO CODE

9

CODE SNIPPETS:

Function for Generating frequency dictionary:

Function for checking if the word fits context a function to return bigram
score:

Function to check whether a word is replaceable:

10

Function to convert tense of the replaced word:

The final simplification function:

11

12

4. RESULTS AND DISCUSSION

For our test cases, we used three large input files that were passed to the
models. The models processed the input files and each model simplified the
input text differently.

The file steps.txt indicates all generated replacement candidates and the ones
used specifically by each of the different models.

The following is a snapshot of what the bigram frequencies look like:

The following is an example of the steps.txt:

13

14

The following is how the lexically simplified sentences look:

In the above picture, the changes made in each sentence can be clearly seen.

5. CONCLUSION AND FUTURE SCOPE
In this project we implemented lexical text simplification that simplifies
complex words in a sentence based on the context it appears in. We first
chose a metric for the selection of the words that would be categorised as
“difficult”. These difficult words would then be required to be replaced. The
complex words were selected as the words whose frequency was lesser than
the 40th percentile of the entire text. For each of the difficult words, a set or
replacement candidates are chosen out of which the best candidate is chosen
based on the model employed.

The future scope of this project is to implement the part - of - speech tagger
ourselves so we have more control over the words considered as replaceable.
The performance of the model can be improved by creating our own context
reader and coming up with a separate algorithm to find replacement words
rather than using the WordNet corpus.

15

6. REFERENCE & SOURCES
1. https://www.aclweb.org/anthology/W03-1602.pdf
2. https://www.aclweb.org/anthology/W13-4813.pdf
3. https://github.com/cocoxu/simplification/tree/master/data/turkcorpus
4. https://pypi.org/project/readability/
5. https://github.com/feralvam/easse
6. http://nlpprogress.com/english/simplification.html
7. Introduction to Information Retrieval - Christopher

Manning,Prabhakar Raghavan,
8. HinrichSchutze

16

