

Introduction to Deep Learning and its Applications
in Text Summarization

Raksha Ramesh
Department of Computer Science

PES University
Bangalore, India

raksharuby@gmail.com

Swanuja Maslekar
Department of Computer Science

PES University
Bangalore, India

swanuja2000@gmail.com

Abstract—As the amount of information available to us has
been increasing exponentially, text summarization has
increasingly become more important as it reduces the time
required to comprehend information. In this paper we aim to
describe and explain the basics required to understand automatic
text summarization which includes neural networks and how it
forms the basis of deep learning, followed by a method to achieve
the same.

Keywords—text summarization, natural language processing,
extractive summary, abstractive summary, neural networks, deep
learning

 INTRODUCTION I.

Text summarization is the process by which a large pool
of sentences, like an article or report is analysed and a
comprehensive summary is returned. It is used and applied
in numerous fields, for example, it is used by news agencies
to generate headlines from their articles, it is used in
question-answer bots to condense the found information into
a small summary that is presented to the end user and it is
used to summarize books, to analyse research papers and
other forms of literature, and so on. Text summarization can
be broadly divided into two categories - extractive
summarization and abstractive summarization, where the
former is achieved by sentence extraction and the latter is
achieved by statistical analysis.

Text summarization falls under the umbrella of Natural
Language Processing (NLP). NLP is broadly defined as the
automatic manipulation of natural language, like speech and
text, by software and its implementation is being done by
statistical methods which make use of machine learning,
thereby delivering higher quality summaries with great
accuracy and speed. In more recent times, NLP is being
implemented, especially in abstractive summarization, by
using deep learning for which understanding artificial neural
networks and their types is extremely important.

 DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP II.
LEARNING

In a machine learning (ML) model, there will be an
algorithm that analyses and understands the data and learns
from it and then applies whatever it has learnt from the
given data on a new set of data to give an output, which
could be a prediction or a conclusion. A machine learning
model requires structured data to work with. This model
becomes better over time as it studies the given data more
and more. If the output given by this model is incorrect, it
requires a human to make changes in the algorithm to
correct the error as a machine learning model doesn’t correct
or learn from its mistakes by itself. Machine learning has
numerous applications in a vast number of fields. A useful
application of it is that it can be used as a recommending

application. A user’s activities on that specific application
can be supplied as data to the ML model and based on what
the user is interested in, it can recommend similar and newer
things to the user. The model would have associated the
given data with other users’ data who have a similar field of
interest.

Deep learning (DL) is a more advanced and evolved form
of machine learning, it functions in a manner similar to
machine learning. In a deep learning model, there will be
numerous layers of an algorithm, each layer working on the
data provided to it and giving an output with different
interpretations, for the next layers to work with. This
structure of having layers of an algorithm is called an
‘artificial neural network’. This neural network is what
makes deep learning different from machine learning. This
model decides for itself whether its output is correct and
fixes itself if it’s incorrect. It does not require a human to
physically make changes in the algorithm to give the correct
output.

The difference between machine learning and deep
learning can be further explained by a problem statement
where the model needs to identify whether the given image
is that of a specific animal, for example - an elephant, or not.
In an ML model, organised and specific data which
identifies the distinct features of an elephant need to be fed
to the model manually. The model will then identify these
features in the given image and give an output. In a DL
model, there is no need to provide such structured data and
can identify the animal from the image by passing it through
the layers of the neural network.

The main differences between ML and DL can be
summed up in the following sentence - ML requires
organized data and human interference to correct its errors
whereas DL does not as it can make intelligent decisions by
itself and learns and corrects itself due to the presence of
neural networks.

 EXTRACTIVE & ABSTRACTIVE SUMMARIZATION III.

There are mainly two methods of automatic text
summarization, extractive and abstractive. Extractive
summarization is achieved by picking the top sentences
from the text based on some ranking system and presenting
these sentences as the summary. Abstractive on the other
hand involves understanding and comprehending the source
text in a linguistic manner and generating a completely new
set of sentences to effectively represent the summary of the
source text.

There are different extractive methods, some better than
the others, however, it is seen that an abstractive approach
gives a summary with better focus and keeps the redundancy
to a minimum while maintaining a good compression rate.

 EXTRACTIVE SUMMARIZATION IV.

In extractive summarization, the important sentences
from the document are recognised and extracted. All these
selected sentences are then rearranged and combined to form
a new and summarized document. No new sentences are
generated by the summarization model; the summary simply
consists of the original sentences which were identified to be
important.

There are three ways to conduct an extractive
summarization - frequency based approach, feature based
approach and machine learning based approach. These three
approaches are explained briefly below -

 Frequency based approach A.

 In this approach, it is assumed that the more number of
times a word appears, the more important it is, that is, words
of higher significance will appear more number of times than
the insignificant ones. Hence, we use ‘word frequency’ to
find and extract the important sentences in a document. This
can be done in two ways -

 Word probability: In this technique, the number of 1)
times a specific word appears in a document is simply
counted and compared against the total length of the
document. This is called the ‘probability of a word’ and is
the ratio of the frequency count of that word in the
document to the total number of words in the document.
Using this ratio, it then computes ‘sentence weights’ for
each sentence and then picks the top sentences based on the
‘sentence weight’ values.

 Term Frequency-Inverse Document Frequency: This 2)
technique reduces the weightage of term frequency (tf)
which is equal to word probability by dividing it with the
inverse document frequency (idf). This value is calculated
by dividing the total number of documents by the total
number of documents that contain that specific word. The tf-
idf ratio is then what is used to calculate weights and to
decide which sentences are important.

 Feature based approach B.

 In this approach, features such as sentence position and
presence of title words are used to identify the important
sentences. Some of the important features are title words - if
the words present in the title appear in a sentence, that
sentence is most likely to be important, sentence position -
beginning sentences and ending/concluding sentences are
most likely to be important, sentence length - short sentences
may be less significant compared to the longer ones, key
words and so on. These features have ‘scores’ and ‘weights’
computed and the sentence score is then calculated using this
which helps to extract the top sentences.

 Machine learning based approach C.

 The working of this approach is similar to any other
machine learning model. There will be a training dataset
which will consist of sentences marked as ‘summary’ or
‘non-summary’ sentences. The model will learn from this
training dataset and then can identify the potential summary
sentences in the new dataset that will be passed through it.

 ARTIFICIAL NEURAL NETWORK V.

An artificial neural network (ANN) is the backbone of a
deep learning model. It is seen as a ‘black-box’, where some
data goes into this network and we then get the required
output at the other end of the network; without knowing

what exactly is happening in between. A neural network can
be defined as - “a computing system that consists of a
number of simple but highly interconnected elements or
nodes, called ‘neurons’, which are organized in layers which
process information using dynamic state responses to
external inputs”. Explained more simply, a neural network is
designed and works in a way similar to the human brain. It
consists of neurons, the same way our brain does, which are
processing units and are highly interconnected to other
neurons, again, similar to our brain.

A neural network consists of an input layer, hidden layers
and an output layer. All the layers in between the input and
output layer which do not take input or produce output are
simply called the hidden layers. All the data processing
happens in these hidden layers. A node is connected to
several nodes in the layer below from where it receives data
and is connected to several nodes in the layer above where it
sends data to and hence is called ‘feed-forward’, that is, data
moves through the network in only one direction.

A brief explanation of how neural networks work - The
input layer has one neuron for each component of the input
data. This input data is introduced to the input layer and then
passed onto the hidden layers. Each of the connections have
a ‘weight’ and ‘bias’ assigned to it. These weights and
biases are initially set to random values which get adjusted
continuously as and when the network is being trained by
the training data. A neuron receives an input, it calculates
the weighted sum which includes the bias and then uses a
pre-set activation function (mostly sigmoid, more recently
the ReLu). This finally results in a single number. If the
number is below the threshold value, no data is passed to the
next layer. If the value is above the threshold value, the
neuron ‘fires’ its connections. The neuron then transmits all
the data to its connecting neurons in a process called the
‘forwards-pass’. At the end of this process, the last hidden
layer is connected to the output layer which also consists of
neurons, one neuron for each of the possible outputs.

 AN EXAMPLE OF AN ARTIFICIAL NEURAL NETWORK – VI.
RECOGNISING HAND-WRITTEN DIGITS

The concept can be more thoroughly understood with a
simple example. Let the neural network in example be an
ANN to recognise hand-written digits.

Let the input data be a 20X20 pixel image of the hand-
written digit. The neural network will start with a bunch of
neurons, 400 to be precise; each neuron corresponding to
each of the 400 pixels. These 400 neurons make up the first
layer of the network. The last layer in this network will have
10 neurons, each neuron corresponding to each of the 10
digits. All the layers in between these two layers are the
hidden layers. Let there be two hidden layers with 16
neurons in each for this example.

The neurons will hold a number whose value will be that
of the grey scale, that is, between 0 (black) and 1 (white).
This number is also called its ‘activation number’. High
activation means white, which means the neuron is lit up.
Activation in one layer will decide the activation in the next
layer. The activation of the neurons in the last layer
represents how much the given system thinks corresponds to
a given digit.

If an image is fed to the network, lighting up all 400
neurons of the input layer according to the brightness of
each pixel in that image, this pattern of activation will
trigger a very specific pattern in the next layer and this

continues to happen till it reaches the output layer and gives
an output, where the brightest neuron in the output layer
represents the digit.

Ideally, the layers would try to recognise the
subcomponents of the hand-written digit and would then
group them together to recognise the digit. For example, if
the hand-written digit is ‘8’, the network would light up all
the neurons which are associated with the edges and loops
present in ‘8’, which would further light up the respective
neurons in the upcoming layers and so on, till the neuron
representing ‘8’ is lit up in the output layer.

To capture any pixel patterns, ‘weights’ are assigned to
each of the connections between the neurons. Then, all the
activations are taken and their weighted sum is computed
using these assigned weights –

w1a1 + w2a2 + w3a3 + … + wnan (1)

Where:
w = weight
a = activation.

This weighted sum can be any number but for the given
network, a number between 0 and 1 is required, that is, a
function is required that compresses all the values to values
between 0 and 1. This can be done by the ‘sigmoid
function’-

σ(x) = 1/1+e-x (2)

The weighted sum equation can then be rewritten as –

σ(w1a1 + w2a2 + w3a3 + … + wnan) (3)

By this equation, it can be said that the activation of the
neuron is basically a measure of how positive the weighted
sum is.
However, there may be conditions as to when the neuron
should light up, that is, it should be lit up when the weighted
sum is greater than a certain number b. There should be a
‘bias’ for it to be inactive. This bias ‘b’ is included in the
equation as follows –

σ(w1a1 + w2a2 + w3a3 + … + wnan - b) (4)

The ‘weights’ tell what pixel patterns the neurons in the
second layer are picking up on and the ‘bias’ tells how high
the weighted sum needs to be before the neurons start
getting meaningfully active.

Every neuron in the second layer is going to be connected to
each of 400 neurons in the first layer and each of these
connections will have its own assigned weight and bias. On
further calculations, it can be said that there would be

around 6858 total weights and biases. These 1000+
equations can be represented very easily in a matrix form –

σቌ൥

𝑤଴,଴ ⋯ 𝑤଴,௡

⋮ ⋱ ⋮
𝑤௞,଴ ⋯ 𝑤௞,௡

൩ ቎
𝑎଴
(଴)

⋮

𝑎௡
(଴)

቏ + ൥
𝑏଴
⋮
𝑏௡

൩ቍ (5)

Hence, a neuron is more of a function than a number.

A cost function is a way of telling a system whether the
output it has given is useful or not. The cost function adds
up the squares of the differences between the incorrect
output and the value it is supposed to give, called the cost of
a single training example. The average cost over all of the
thousands of training examples is considered and this value
indicates how useful the network is. When the cost is low,
the network is good and when the cost is high, the network
is bad.

If the cost function is high, there needs to be a way to let
the network know how it can perform better. To explain this
further, let there be a function with just one input, rather
than the 6858 inputs, and just one number as output and
what needs to be found is an input that minimizes the value
of the cost function. One way to find the local minimum is
to start at any old input and to figure out which direction to
move it, greater or lesser, to lower the cost. Hence, for a
function with more than one input, the negative gradient of
the function can be found, as this gives the direction of the
steepest descent, and this process can be repeated till the
local minimum is found.

This process of repeatedly moving an input of a function
by some multiple of the negative gradient is called gradient
descent. It’s a way to converge towards some local
minimum of the cost function. The initial network is
initialized with random weights and biases and then by the
gradient descent process, these weights and biases are
continuously adjusted. Cost function involves an average
over all of the training data, so if it is minimized, it means
it’s a better performance over all the samples.

The algorithm for computing this gradient efficiently,
which is basically the heart of how a neural network works,
is called back propagation. This is the algorithm that
computes the gradient.

In a stage where the model isn’t properly trained yet, the
activations will be random and this is what needs to be
changed to get the desired output. There are three ways to
change the activation - by changing the weight, by changing
the bias or by changing the activation from the previous
layer. The change in weight is proportional to the change in
activation and vice versa. The activation cannot be
influenced directly, only the weights and biases can be
controlled. Here is where ‘propagating backwards’ comes in
- by adding together all the required changes, a list of
changes needed for the second to last layer is created. The
same process can be applied recursively to the relevant
weights and biases that determine those values and by
moving backwards through the network. This same routine
of back propagation is followed for every other training
example, recording how each example would like to change
its weights and biases and then these required changes are
averaged together. The stochastic gradient descent is what is
used to compute the gradient for the complete dataset.

This is the basics of how an artificial neural network
works as the heart of deep learning. There are many more
concepts and changes that can be applied to this basic neural

Fig. 1. Graph of the sigmoid function

network and that is what is done in the implementation
process of text summarization.

 ARCHITECTURE AND TYPES OF ARTIFICIAL NEURAL VII.
NETWORK

There are many variations of Artificial Neural Networks
used for different applications. Some of the important ones
are listed below –

 Convolutional Neural Network (CNN) A.
Selects sections of the input and processes them

separately in different convolutional layers. It finds its
application in areas like image processing.

 Recursive Neural Network (RNN) B.
This modification is achieved by recursively applying

the same weights over the structure to make a prediction by
traversing the structure in a topological order.

 Recurrent Neural Network C.
This variation of an ANN has not only a feed-forward

system, but also has a feed-back mechanism, and thus has an
element of memory. This is used in applications where the
variable changes with respect to time, like in NLP where
keeping track of the previous inputs is vital for accurate
results.

There are other types like Long Short Term Memory
(LSTM) and Sequence-to-Sequence (Seq2Seq) which are
more developed versions of the above mentioned basic
ANNs.

 ABSTRACTIVE SUMMARIZATION VIII.

As stated before, abstractive automatic summarization
involves understanding and comprehending the source text
in a linguistic manner and generating a completely new set
of sentences to effectively represent the summary of the
source text. Abstractive summarization is mainly of two
types, structure based and semantic based. These two types
are explained briefly below –

 Structure based approach A.
This method relies on techniques that use prior

knowledge and features like templates and extraction rules.
The following are methods of the structure based abstractive
text summarization –

 Tree based approach: A general theme is identified 1)

and by a clustering algorithm, the sentences are ordered.
 Template based method: A template is used that 2)

extracts information using fillers and slots.
 Ontology based method: Ontology represents online 3)

documents that are domain connected which have their
own information structure. This idea is used to generate
new sentences.

 Graph based method: A graph is created where the 4)
vertices denote the words and the edges denote the relation
between the words.

 Lead and body phrase method: This process is used 5)
when there is a similarity in the sentence structure where a
set of fixed phrases are used in the lead, and body sentences
that are used to rewrite the lead sentence.

 Semantics based approach B.

This method computes the summary by keeping the
sentence structure, namely, subject-verb-object as its basis.
It also takes into account the sentence position in the entire
text and word positions within the sentences. The following
are methods of the semantics based abstractive text
summarization –

 Multimodal semantic model: This is used to capture 1)

the relation between concepts of multimodal documents.
 Semantic Graph Model: This method summarizes a 2)

document by creating RSG for the initial document by
reducing the linguistics graph and then generating the final
abstractive outline from the reduced linguistics graph.

 Information item based method: The information 3)
about the summary is generated from abstract representation
of supply documents, as opposed to the sentences from
supply documents.

 Semantic Text Representation Model: This technique 4)
aims to analyze input text using the semantics of words
rather than syntax/structure of text.

 IMPLEMENTATION IX.

In our implementation, we summarized a document of
text using a combination of both extractive and abstractive
methods. First we employed an extractive method to get a
smaller section of the data, which we then passed through
the abstractive method to generate a new summary.

We started our analysis with a dataset containing articles
from February-August 2017 and their summaries. We
cleaned our dataset and passed it through an extractive
method and stored the extracted summaries. We achieved
the extraction by first tokenizing the cleaned data into
sentences and creating a similarity matrix having the
similarity indices between every two sentences and then
converting this matrix into a graph. Similarity between the
sentences was found as 1 minus the cosine distance between
the two sentence vectors. The TextRank algorithm is applied
on the graph to obtain the top n sentences. The
concatenation of these top n sentences gave the extracted
summary.

The PageRank algorithm is used by Google Search to
rank web pages. The idea is that important pages are linked
to each other. The PageRank index of a page is essentially
the probability of a user visiting it. This can be applied in
TextRank by substituting the pages in the PageRank with
sentences in the TextRank.

We then passed the extracted summary as the input for
the abstractive model, which returned the final abstracted
summary.

To achieve this, deep learning using Sequence-to-
Sequence (Seq2Seq) ANN was employed. The Seq2Seq
model is used to solve any problem which involves
sequential information. Text summarization can be modelled
as a Many-to-Many Seq2Seq problem. It is often
implemented using Recurrent Neural Network (RNN) or
Grated Recurrent Neural Network (GRU) or Long Short
Term Memory (LSTM) as a memory component is
necessary to capture the context of the sentences.

Fig. 2. A typical Seq2Seq model architecture

There are two main components of the Seq2Seq model

are, encoder and decoder. Both these parts are of LSTM
networks. In the training phase, the encoder reads the entire
input sequence and at each timestep, one word is fed into the
encoder. It then processes the information and captures the
contextual information present in the input sequence.

The decoder reads the entire target sequence word-by-
word and predicts the same sequence offset by one timestep.
The decoder is trained to predict the next word in the
sequence given the previous word. ‘<start>’ and ‘<end>’ are
keywords that are added to the start and end of the target
sequence. The decoder will start predicting when the first
word of the target sequence is passed which is ‘<start>’ and
the ‘<end>’ keyword would indicate the end of the target
sequence.

After the training phase comes the inference phase where
the model is now working on data where the target sequence
is unknown. In this phase, the ‘<start>’ keyword is passed to
the decoder and the decoder is run for one timestep. The
output will be the probability of the next word, so the word
with maximum probability is selected. The sampled word is
passed as input to the decoder and the internal states are
updated with the current timestep. This process is repeated
until the ‘<end>’ keyword is reached.

We used the above described Seq2Seq model for our

implementation.
One of the limitations of this encoder-decoder

architecture is that it works only for short sequences because
it is difficult for the encoder to memorise long sequences.
This problem is fixed with the ‘attention mechanism’. This
mechanism predicts a word looking only at a few parts of
the sequence and not the entire sequence. Instead of looking
at each word in the source sequence, the importance of a few
specific parts of the source sequence which results in the
target sequence. There are two types of attention mechanism
– local attention and global attention. In the former, the
focus is only on a few source positions and in the latter, the
focus is on all source positions.

All the required libraries were imported and a third-party
implementation was used to get the attention layer.

Before starting the actual implementation on the dataset,
all the repeated and NAN values were dropped and the data
was pre-processed. All the unwanted symbols and characters
were dropped, all characters were converted to lowercase,
contraction mapping was done and all stop words, short
words, punctuations and special characters were eliminated.
The ‘<start>’ and ‘<end>’ keywords were added to the
sentences.

A tokenizer was then built which converted our sentence
sequence to an integer sequence. The encoder-decoder
LSTM model was then built, whose working has been
explained.

The dataset was divided into training data and testing
data. The model is trained through multiple epochs of the

training data and verified using the testing data. The
inference model for the encoder-decoder was then built and
then the integer sequence was converted to a word sequence.

The output is the final required summary.
Hence, this is how deep learning is used to achieve text

summarization.

 CONCLUSION X.

Text summarization is a growing field with great potential
as the necessity for short, condensed abstracts of topics is
only increasing with the growing amounts of data on the
internet. In this paper, we have reviewed the basics to
understand both kinds of text summarization namely,
extractive and abstractive. This included brief explanations
of multiple approaches to extractive and abstractive methods
and an in-detail explanation of neural networks required for
the implementation of any kind of abstractive method. We
have also briefed over an implementation method for
achieving text summarization.

ACKNOWLEDGEMENT

This work has been supported by the Computer Science
Department of PES University, Bangalore, India. We would
like to thank Dr. Uma D. for mentoring us throughout the
course of this project and we express our deepest gratitude
to her and to the department for providing us with this
opportunity.

REFERENCES
[1] Yogan Jaya Kumar, Ong Sing Goh, Halizah Basiron, Ngo Hea

Choon and Puspalata C Suppiah, “A review on automatic text
summarization approaches”.

[2] Deepali K. Gaikwad and C. Namrata Mahender, “A review
paper on text summarization”.

[3] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assef, Saeid
Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut,
“Text summarization techniques – a brief survey”.

[4] Alexander M. Rush, Sumit Chopra and James Weston, “A
neural attention model for abstractive sentence summarization”.

[5] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Calgar
Gulcehre and Bing Xiang, “Abstractive text summarization
using sequence-to-sequence RNNs and beyond”.

[6] Itsumi Saito, Kyosuke Nishida, Kosuke Nishida, Atsushi
Otsuka, Hisako Asona, Junji Tomita, Hiroyuki Shindo and Yuji
Matsumuto, “Length-controllable abstractive summarization by
guiding with summary prototype”.

URL REFERENCES

[1] Attention in Deep Networks with Keras
[2] 7 types of Artificial Neural Networks for Natural Language

Processing
[3] Ten trends in Deep learning NLP
[4] Understanding LSTM Networks
[5] Deep Contextualized Word Representations with ELMo
[6] https://www.kaggle.com/sandeepbhogaraju/text-summarization-

with-seq2seq-model/data
[7] Comprehensive Guide to Text Summarization using Deep

Learning in Python
[8] Introduction to Text Summarization using the TextRank

Algorithm
[9] Understand Text Summarization and create your own

summarizer in python
[10] https://github.com/aravindpai/How-to-build-own-text-

summarizer-using-deep-learning
[11] Shakunni/Extractive-Text-Summarization: Extractive Text

Summarization in Python
[12] https://towardsdatascience.com/understand-text-summarization-

and-create-your-own-summarizer-in-python-b26a9f09fc70
[13] https://www.kaggle.com/sunnysai12345/news-

summary#news_summary.csv
[14] Comprehensive Guide to Text Summarization using Deep

Learning in Python

Fig. 3. Encoder-Decoder architecture

[15] https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQ
ObOWTQDNU6R1_67000Dx_ZCJB-3pi

[16] 20 Applications of Automatic Summarization in the Enterprise
[17] Understand Text Summarization and create your own

summarizer in python
[18] (PDF) Study of Abstractive Text Summarization Techniques
[19] Develop a Word-Level Neural Language Model and Use it to

Generate Text
[20] How to Get Started with Deep Learning for Natural Language

Processing
[21] What's the difference between machine learning and deep

learning?
[22] Deep Learning vs. Machine Learning: A Simple Explanation
[23] Difference between Deep Learning & Machine Learning
[24] Understanding Neural Networks: What, How and Why?
[25] Neural Networks and Deep Learning

