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Abstract—As the amount of information available to us has 
been increasing exponentially, text summarization has 
increasingly become more important as it reduces the time 
required to comprehend information. In this paper we aim to 
describe and explain the basics required to understand automatic 
text summarization which includes neural networks and how it 
forms the basis of deep learning, followed by a method to achieve 
the same. 
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 INTRODUCTION I.

Text summarization is the process by which a large pool 
of sentences, like an article or report is analysed and a 
comprehensive summary is returned. It is used and applied 
in numerous fields, for example, it is used by news agencies 
to generate headlines from their articles, it is used in 
question-answer bots to condense the found information into 
a small summary that is presented to the end user and it is 
used to summarize books, to analyse research papers and 
other forms of literature, and so on.  Text summarization can 
be broadly divided into two categories - extractive 
summarization and abstractive summarization, where the 
former is achieved by sentence extraction and the latter is 
achieved by statistical analysis. 

Text summarization falls under the umbrella of Natural 
Language Processing (NLP). NLP  is broadly defined as the 
automatic manipulation of natural language, like speech and 
text, by software and its implementation is being done by 
statistical methods which make use of machine learning, 
thereby delivering higher quality summaries with great 
accuracy and speed. In more recent times, NLP is being 
implemented, especially in abstractive summarization, by 
using deep learning for which understanding artificial neural 
networks and their types is extremely important. 

 DIFFERENCE BETWEEN MACHINE LEARNING AND DEEP II.
LEARNING 

In a machine learning (ML) model, there will be an 
algorithm that analyses and understands the data and learns 
from it and then applies whatever it has learnt from the 
given data on a new set of data to give an output, which 
could be a prediction or a conclusion. A machine learning 
model requires structured data to work with. This model 
becomes better over time as it studies the given data more 
and more. If the output given by this model is incorrect, it 
requires a human to make changes in the algorithm to 
correct the error as a machine learning model doesn’t correct 
or learn from its mistakes by itself. Machine learning has 
numerous applications in a vast number of fields. A useful 
application of it is that it can be used as a recommending 

application. A user’s activities on that specific application 
can be supplied as data to the ML model and based on what 
the user is interested in, it can recommend similar and newer 
things to the user. The model would have associated the 
given data with other users’ data who have a similar field of 
interest. 

Deep learning (DL) is a more advanced and evolved form 
of machine learning, it functions in a manner similar to 
machine learning. In a deep learning model, there will be 
numerous layers of an algorithm, each layer working on the 
data provided to it and giving an output with different 
interpretations, for the next layers to work with. This 
structure of having layers of an algorithm is called an 
‘artificial neural network’. This neural network is what 
makes deep learning different from machine learning. This 
model decides for itself whether its output is correct and 
fixes itself if it’s incorrect. It does not require a human to 
physically make changes in the algorithm to give the correct 
output. 

The difference between machine learning and deep 
learning can be further explained by a problem statement 
where the model needs to identify whether the given image 
is that of a specific animal, for example - an elephant, or not. 
In an ML model, organised and specific data which 
identifies the distinct features of an elephant need to be fed 
to the model manually. The model will then identify these 
features in the given image and give an output. In a DL 
model, there is no need to provide such structured data and 
can identify the animal from the image by passing it through 
the layers of the neural network. 

The main differences between ML and DL can be 
summed up in the following sentence - ML requires 
organized data and human interference to correct its errors 
whereas DL does not as it can make intelligent decisions by 
itself and learns and corrects itself due to the presence of 
neural networks. 

 EXTRACTIVE & ABSTRACTIVE SUMMARIZATION III.

There are mainly two methods of automatic text 
summarization, extractive and abstractive. Extractive 
summarization is achieved by picking the top sentences 
from the text based on some ranking system and presenting 
these sentences as the summary. Abstractive on the other 
hand involves understanding and comprehending the source 
text in a linguistic manner and generating a completely new 
set of sentences to effectively represent the summary of the 
source text.  

There are different extractive methods, some better than 
the others, however, it is seen that an abstractive approach 
gives a summary with better focus and keeps the redundancy 
to a minimum while maintaining a good compression rate. 



 

 EXTRACTIVE SUMMARIZATION IV.

In extractive summarization, the important sentences 
from the document are recognised and extracted. All these 
selected sentences are then rearranged and combined to form 
a new and summarized document. No new sentences are 
generated by the summarization model; the summary simply 
consists of the original sentences which were identified to be 
important.  

There are three ways to conduct an extractive 
summarization - frequency based approach, feature based 
approach and machine learning based approach. These three 
approaches are explained briefly below - 

 Frequency based approach A.

 In this approach, it is assumed that the more number of 
times a word appears, the more important it is, that is, words 
of higher significance will appear more number of times than 
the insignificant ones. Hence, we use ‘word frequency’ to 
find and extract the important sentences in a document. This 
can be done in two ways - 

 Word probability: In this technique, the number of 1)
times a specific word appears in a document is simply 
counted and compared against the total length of the 
document. This is called the ‘probability of a word’ and is 
the ratio of the frequency count of that word in the 
document to the total number of words in the document. 
Using this ratio, it then computes ‘sentence weights’ for 
each sentence and then picks the top sentences based on the 
‘sentence weight’ values. 

 Term Frequency-Inverse Document Frequency: This 2)
technique reduces the weightage of term frequency (tf) 
which is equal to word probability by dividing it with the 
inverse document frequency (idf). This value is calculated 
by dividing the total number of documents by the total 
number of documents that contain that specific word. The tf-
idf ratio is then what is used to calculate weights and to 
decide which sentences are important. 

 Feature based approach B.

 In this approach, features such as sentence position and 
presence of title words are used to identify the important 
sentences. Some of the important features are title words - if 
the words present in the title appear in a sentence, that 
sentence is most likely to be important, sentence position - 
beginning sentences and ending/concluding sentences are 
most likely to be important, sentence length - short sentences 
may be less significant compared to the longer ones, key 
words and so on. These features have ‘scores’ and ‘weights’ 
computed and the sentence score is then calculated using this 
which helps to extract the top sentences. 

 Machine learning based approach C.

 The working of this approach is similar to any other 
machine learning model. There will be a training dataset 
which will consist of sentences marked as ‘summary’ or 
‘non-summary’ sentences. The model will learn from this 
training dataset and then can identify the potential summary 
sentences in the new dataset that will be passed through it. 

 ARTIFICIAL NEURAL NETWORK V.

An artificial neural network (ANN) is the backbone of a 
deep learning model. It is seen as a ‘black-box’, where some 
data goes into this network and we then get the required 
output at the other end of the network; without knowing 

what exactly is happening in between. A neural network can 
be defined as - “a computing system that consists of a 
number of simple but highly interconnected elements or 
nodes, called ‘neurons’, which are organized in layers which 
process information using dynamic state responses to 
external inputs”. Explained more simply, a neural network is 
designed and works in a way similar to the human brain. It 
consists of neurons, the same way our brain does, which are 
processing units and are highly interconnected to other 
neurons, again, similar to our brain. 

A neural network consists of an input layer, hidden layers 
and an output layer. All the layers in between the input and 
output layer which do not take input or produce output are 
simply called the hidden layers. All the data processing 
happens in these hidden layers. A node is connected to 
several nodes in the layer below from where it receives data 
and is connected to several nodes in the layer above where it 
sends data to and hence is called ‘feed-forward’, that is, data 
moves through the network in only one direction. 

A brief explanation of how neural networks work - The 
input layer has one neuron for each component of the input 
data. This input data is introduced to the input layer and then 
passed onto the hidden layers. Each of the connections have 
a ‘weight’ and ‘bias’ assigned to it. These weights and 
biases are initially set to random values which get adjusted 
continuously as and when the network is being trained by 
the training data. A neuron receives an input, it calculates 
the weighted sum which includes the bias and then uses a 
pre-set activation function (mostly sigmoid, more recently 
the ReLu). This finally results in a single number. If the 
number is below the threshold value, no data is passed to the 
next layer. If the value is above the threshold value, the 
neuron ‘fires’ its connections. The neuron then transmits all 
the data to its connecting neurons in a process called the 
‘forwards-pass’. At the end of this process, the last hidden 
layer is connected to the output layer which also consists of 
neurons, one neuron for each of the possible outputs. 

 AN EXAMPLE OF AN ARTIFICIAL NEURAL NETWORK – VI.
RECOGNISING HAND-WRITTEN DIGITS 

The concept can be more thoroughly understood with a 
simple example. Let the neural network in example be an 
ANN to recognise hand-written digits. 

Let the input data be a 20X20 pixel image of the hand-
written digit. The neural network will start with a bunch of 
neurons, 400 to be precise; each neuron corresponding to 
each of the 400 pixels. These 400 neurons make up the first 
layer of the network. The last layer in this network will have 
10 neurons, each neuron corresponding to each of the 10 
digits. All the layers in between these two layers are the 
hidden layers. Let there be two hidden layers with 16 
neurons in each for this example. 

The neurons will hold a number whose value will be that 
of the grey scale, that is, between 0 (black) and 1 (white). 
This number is also called its ‘activation number’. High 
activation means white, which means the neuron is lit up. 
Activation in one layer will decide the activation in the next 
layer. The activation of the neurons in the last layer 
represents how much the given system thinks corresponds to 
a given digit. 

If an image is fed to the network, lighting up all 400 
neurons of the input layer according to the brightness of 
each pixel in that image, this pattern of activation will 
trigger a very specific pattern in the next layer and this 



 

continues to happen till it reaches the output layer and gives 
an output, where the brightest neuron in the output layer 
represents the digit. 

Ideally, the layers would try to recognise the 
subcomponents of the hand-written digit and would then 
group them together to recognise the digit. For example, if 
the hand-written digit is ‘8’, the network would light up all 
the neurons which are associated with the edges and loops 
present in ‘8’, which would further light up the respective 
neurons in the upcoming layers and so on, till the neuron 
representing ‘8’ is lit up in the output layer. 

To capture any pixel patterns, ‘weights’ are assigned to 
each of the connections between the neurons. Then, all the 
activations are taken and their weighted sum is computed 
using these assigned weights – 
 
w1a1 + w2a2 + w3a3 + … + wnan                                                                 (1) 
 
Where: 
w = weight 
a = activation. 
 
This weighted sum can be any number but for the given 
network, a number between 0 and 1 is required, that is, a 
function is required that compresses all the values to values 
between 0 and 1. This can be done by the ‘sigmoid 
function’- 
 
σ(x) = 1/1+e-x                                                                      (2) 
 
 
 
 
 
                                   
 

 
 

 
The weighted sum equation can then be rewritten as – 
 
σ(w1a1 + w2a2 + w3a3 + … + wnan)                                      (3) 

 
By this equation, it can be said that the activation of the 
neuron is basically a measure of how positive the weighted 
sum is. 
However, there may be conditions as to when the neuron 
should light up, that is, it should be lit up when the weighted 
sum is greater than a certain number b. There should be a 
‘bias’ for it to be inactive. This bias ‘b’ is included in the 
equation as follows – 
 
σ(w1a1 + w2a2 + w3a3 + … + wnan - b)                                (4) 
 
The ‘weights’ tell what pixel patterns the neurons in the 
second layer are picking up on and the ‘bias’ tells how high 
the weighted sum needs to be before the neurons start 
getting meaningfully active. 
 
Every neuron in the second layer is going to be connected to 
each of 400 neurons in the first layer and each of these 
connections will have its own assigned weight and bias. On 
further calculations, it can be said that there would be 

around 6858 total weights and biases. These 1000+ 
equations can be represented very easily in a matrix form – 
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Hence, a neuron is more of a function than a number.  

A cost function is a way of telling a system whether the 
output it has given is useful or not. The cost function adds 
up the squares of the differences between the incorrect 
output and the value it is supposed to give, called the cost of 
a single training example. The average cost over all of the 
thousands of training examples is considered and this value 
indicates how useful the network is. When the cost is low, 
the network is good and when the cost is high, the network 
is bad. 

If the cost function is high, there needs to be a way to let 
the network know how it can perform better. To explain this 
further, let there be a function with just one input, rather 
than the 6858 inputs, and just one number as output and 
what needs to be found is an input that minimizes the value 
of the cost function. One way to find the local minimum is 
to start at any old input and to figure out which direction to 
move it, greater or lesser, to lower the cost. Hence, for a 
function with more than one input, the negative gradient of 
the function can be found, as this gives the direction of the 
steepest descent, and this process can be repeated till the 
local minimum is found. 

This process of repeatedly moving an input of a function 
by some multiple of the negative gradient is called gradient 
descent. It’s a way to converge towards some local 
minimum of the cost function. The initial network is 
initialized with random weights and biases and then by the 
gradient descent process, these weights and biases are 
continuously adjusted. Cost function involves an average 
over all of the training data, so if it is minimized, it means 
it’s a better performance over all the samples. 

The algorithm for computing this gradient efficiently, 
which is basically the heart of how a neural network works, 
is called back propagation. This is the algorithm that 
computes the gradient. 

In a stage where the model isn’t properly trained yet, the 
activations will be random and this is what needs to be 
changed to get the desired output. There are three ways to 
change the activation - by changing the weight, by changing 
the bias or by changing the activation from the previous 
layer. The change in weight is proportional to the change in 
activation and vice versa. The activation cannot be 
influenced directly, only the weights and biases can be 
controlled. Here is where ‘propagating backwards’ comes in 
- by adding together all the required changes, a list of 
changes needed for the second to last layer is created. The 
same process can be applied recursively to the relevant 
weights and biases that determine those values and by 
moving backwards through the network. This same routine 
of back propagation is followed for every other training 
example, recording how each example would like to change 
its weights and biases and then these required changes are 
averaged together. The stochastic gradient descent is what is 
used to compute the gradient for the complete dataset. 

This is the basics of how an artificial neural network 
works as the heart of deep learning. There are many more 
concepts and changes that can be applied to this basic neural 

 
Fig. 1. Graph of the sigmoid function 



 

network and that is what is done in the implementation 
process of text summarization. 

 ARCHITECTURE AND TYPES OF ARTIFICIAL NEURAL VII.
NETWORK 

There are many variations of Artificial Neural Networks 
used for different applications. Some of the important ones 
are listed below – 
 

 Convolutional Neural Network (CNN) A.
Selects sections of the input and processes them 

separately in different convolutional layers. It finds its 
application in areas like image processing. 
 

 Recursive Neural Network (RNN) B.
This modification is achieved by recursively applying 

the same weights over the structure to make a prediction by 
traversing the structure in a topological order. 
 

 Recurrent Neural Network C.
This variation of an ANN has not only a feed-forward 

system, but also has a feed-back mechanism, and thus has an 
element of memory. This is used in applications where the 
variable changes with respect to time, like in NLP where 
keeping track of the previous inputs is vital for accurate 
results. 
 
There are other types like Long Short Term Memory 
(LSTM) and Sequence-to-Sequence (Seq2Seq) which are 
more developed versions of the above mentioned basic 
ANNs. 

 ABSTRACTIVE SUMMARIZATION VIII.

As stated before, abstractive automatic summarization 
involves understanding and comprehending the source text 
in a linguistic manner and generating a completely new set 
of sentences to effectively represent the summary of the 
source text. Abstractive summarization is mainly of two 
types, structure based and semantic based. These two types 
are explained briefly below – 
 

 Structure based approach A.
This method relies on techniques that use prior 

knowledge and features like templates and extraction rules. 
The following are methods of the structure based abstractive 
text summarization – 

 
 Tree based approach: A general theme is identified 1)

and by a clustering algorithm, the sentences are ordered. 
 Template based method: A template is used that 2)

extracts information using fillers and slots. 
 Ontology based method: Ontology  represents  online  3)

documents  that  are  domain  connected  which  have their  
own information  structure. This idea is used to generate 
new sentences. 

 Graph based method: A graph is created where the 4)
vertices denote the words and the edges denote the relation 
between the words. 

 Lead and body phrase method: This process is used 5)
when there is a similarity in the sentence structure where a 
set of fixed phrases are used in the lead, and body sentences 
that are used to rewrite the lead sentence. 
 

 Semantics based approach B.

This method computes the summary by keeping the 
sentence structure, namely, subject-verb-object as its basis. 
It also takes into account the sentence position in the entire 
text and word positions within the sentences. The following 
are methods of the semantics based abstractive text 
summarization – 

 
 Multimodal semantic model: This is used to capture 1)

the relation between concepts of multimodal documents. 
 Semantic Graph Model: This method summarizes a 2)

document by creating RSG for the initial document by 
reducing the linguistics graph and then generating the final 
abstractive outline from the reduced linguistics graph. 

 Information item based method: The information 3)
about the summary is generated from abstract representation 
of supply documents, as opposed to the sentences from 
supply documents. 

 Semantic Text Representation Model: This technique 4)
aims to analyze input text using the semantics of words 
rather than syntax/structure of text. 

 IMPLEMENTATION IX.

In our implementation, we summarized a document of 
text using a combination of both extractive and abstractive 
methods. First we employed an extractive method to get a 
smaller section of the data, which we then passed through 
the abstractive method to generate a new summary. 

We started our analysis with a dataset containing articles 
from February-August 2017 and their summaries. We 
cleaned our dataset and passed it through an extractive 
method and stored the extracted summaries. We achieved 
the extraction by first tokenizing the cleaned data into 
sentences and creating a similarity matrix having the 
similarity indices between every two sentences and then 
converting this matrix into a graph. Similarity between the 
sentences was found as 1 minus the cosine distance between 
the two sentence vectors. The TextRank algorithm is applied 
on the graph to obtain the top n sentences. The 
concatenation of these top n sentences gave the extracted 
summary. 

The PageRank algorithm is used by Google Search to 
rank web pages. The idea is that important pages are linked 
to each other. The PageRank index of a page is essentially 
the probability of a user visiting it. This can be applied in 
TextRank by substituting the pages in the PageRank with 
sentences in the TextRank. 

We then passed the extracted summary as the input for 
the abstractive model, which returned the final abstracted 
summary.  

To achieve this, deep learning using Sequence-to-
Sequence (Seq2Seq) ANN was employed.  The Seq2Seq 
model is used to solve any problem which involves 
sequential information. Text summarization can be modelled 
as a Many-to-Many Seq2Seq problem. It is often 
implemented using Recurrent Neural Network (RNN) or 
Grated Recurrent Neural Network (GRU) or Long Short 
Term Memory (LSTM) as a memory component is 
necessary to capture the context of the sentences. 

 
 
 
 
 
 

 
Fig. 2. A typical Seq2Seq model architecture 



 

 
There are two main components of the Seq2Seq model 

are, encoder and decoder. Both these parts are of LSTM 
networks. In the training phase, the encoder reads the entire 
input sequence and at each timestep, one word is fed into the 
encoder. It then processes the information and captures the 
contextual information present in the input sequence. 

The decoder reads the entire target sequence word-by-
word and predicts the same sequence offset by one timestep. 
The decoder is trained to predict the next word in the 
sequence given the previous word. ‘<start>’ and ‘<end>’ are 
keywords that are added to the start and end of the target 
sequence. The decoder will start predicting when the first 
word of the target sequence is passed which is ‘<start>’ and 
the ‘<end>’ keyword would indicate the end of the target 
sequence. 

After the training phase comes the inference phase where 
the model is now working on data where the target sequence 
is unknown. In this phase, the ‘<start>’ keyword is passed to 
the decoder and the decoder is run for one timestep. The 
output will be the probability of the next word, so the word 
with maximum probability is selected. The sampled word is 
passed as input to the decoder and the internal states are 
updated with the current timestep. This process is repeated 
until the ‘<end>’ keyword is reached. 

 
 
 
 
 
 
 
 
 
We used the above described Seq2Seq model for our 

implementation. 
One of the limitations of this encoder-decoder 

architecture is that it works only for short sequences because 
it is difficult for the encoder to memorise long sequences. 
This problem is fixed with the ‘attention mechanism’. This 
mechanism predicts a word looking only at a few parts of 
the sequence and not the entire sequence. Instead of looking 
at each word in the source sequence, the importance of a few 
specific parts of the source sequence which results in the 
target sequence. There are two types of attention mechanism 
– local attention and global attention. In the former, the 
focus is only on a few source positions and in the latter, the 
focus is on all source positions. 

All the required libraries were imported and a third-party 
implementation was used to get the attention layer. 

Before starting the actual implementation on the dataset, 
all the repeated and NAN values were dropped and the data 
was pre-processed. All the unwanted symbols and characters 
were dropped, all characters were converted to lowercase, 
contraction mapping was done and all stop words, short 
words, punctuations and special characters were eliminated. 
The ‘<start>’ and ‘<end>’ keywords were added to the 
sentences.  

A tokenizer was then built which converted our sentence 
sequence to an integer sequence. The encoder-decoder 
LSTM model was then built, whose working has been 
explained.  

The dataset was divided into training data and testing 
data. The model is trained through multiple epochs of the 

training data and verified using the testing data. The 
inference model for the encoder-decoder was then built and 
then the integer sequence was converted to a word sequence. 

The output is the final required summary.  
Hence, this is how deep learning is used to achieve text 

summarization. 

 CONCLUSION X.

Text summarization is a growing field with great potential 
as the necessity for short, condensed abstracts of topics is 
only increasing with the growing amounts of data on the 
internet. In this paper, we have reviewed the basics to 
understand both kinds of text summarization namely, 
extractive and abstractive. This included brief explanations 
of multiple approaches to extractive and abstractive methods 
and an in-detail explanation of neural networks required for 
the implementation of any kind of abstractive method. We 
have also briefed over an implementation method for 
achieving text summarization. 
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