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Abstract

Machine Translation (MT) is a pivotal task in
Natural Language Processing (NLP), offering the
potential to bridge linguistic barriers and enhance
global communication. This project explores the
challenges of deploying high-quality Chinese-to-
English MT models on resource-constrained de-
vices. By leveraging the UM-Corpus dataset,
techniques such as Low-Rank Adaptation (LoRA)
and layer freezing were investigated to optimize
model performance while minimizing computa-
tional overhead. The findings demonstrate that
parameter-efficient fine-tuning approaches can
balance performance and resource constraints,
making advanced MT capabilities feasible on edge
devices. This work provides a comprehensive
evaluation of MT strategies, offering insights into
achieving scalable and efficient translation models
for real-world applications.

1 Introduction

MT seeks to automatically convert text from one
language into another, enabling seamless commu-
nication across linguistic borders. By providing
access to content in languages users do not speak,
MT supports international collaboration, global
business endeavors, and broadens the accessibil-
ity of educational and cultural materials. As re-
search advances, a key concern emerges: how can
we maintain strong translation performance while
operating under the computational constraints of
edge devices such as smartphones, tablets, or spe-
cialized embedded systems?
This project zeroes in on translating from Chi-

nese (Zh) to English (En) using the UM-Corpus
dataset. The language pair offers a rich testing
ground due to the distinctive orthography and
syntactic structures of Chinese compared to En-
glish, challenging the model to capture not only
lexical equivalences but also nuanced syntactic
and semantic transformations. While large-scale
MT models have shown exceptional quality, their
deployment demands substantial computational

and memory resources. This often makes them
impractical for on-device applications. In con-
trast, smaller models, though easier to deploy
on such devices, frequently struggle to match the
performance of their larger counterparts.

Figure 1: An illustration of the core MT task.

Formal Definition of the Problem: Let X
be the set of source language sentences in Chi-
nese and Y be the set of target language sen-
tences in English. We aim to learn a function
f : X → Y that, for each x ∈ X , produces a
y ∈ Y which accurately reflects the meaning of x,
respects target language grammar, and achieves
high quality as measured by the chosen metric
(BLEU Score). The function f operates within
the bounds of available hardware resources, such
as memory and processing power, suitable for de-
ployment on edge devices or cloud servers.

Our primary motivation for this project is to
discover effective methods to build and adapt MT
models for resource-limited environments. We
want to explore approaches that enable strong
translation performance without significant com-
putational overhead, making it feasible to train
and deploy the models on devices with limited
hardware capabilities. Techniques like LoRA
(Low-Rank Adaptation) and selective parameter
updating (e.g., layer freezing) allow us to fine-
tune small models (e.g., mBART, M2M100) ef-
ficiently, potentially closing the gap in perfor-
mance between resource-heavy large models and
lightweight models suitable for on-device use. By
doing so, we aspire to bring advanced MT capabil-
ities to resource-constrained platforms, ultimately
broadening the availability of high-quality, real-
time translation services across a range of practi-
cal settings.

1



Figure 2: An illustration of the Experiments Conducted.

2 Literature Review

2.1 Datasets and Out-of-Domain
Evaluation

A critical starting point for building robust Neu-
ral Machine Translation (NMT) models is the
availability of high-quality parallel corpora. The
UM-Corpus [6] serves as a foundational English-
Chinese dataset originally constructed for Statis-
tical Machine Translation (SMT), comprising ap-
proximately 15 million parallel sentences across
eight diverse domains (e.g., news, laws, subtitles,
and microblogs). Such domain breadth is pivotal
for training NMT systems that can handle varied
linguistic phenomena and maintain strong perfor-
mance across multiple content types. Leverag-
ing the UM-Corpus in this project thus aims to
ensure that models remain resilient under realis-
tic deployment conditions, especially on resource-
constrained edge devices.

However, relying solely on in-domain test sets
can misrepresent true generalization capabilities.
To address this, recent research proposes more nu-
anced out-of-domain (OOD) challenge sets. Chen
et al. [2] introduced a multifaceted evaluation
framework for Chinese-English translation, cat-
egorizing sentences by word difficulty, length,
grammatical complexity, and model learning dif-
ficulty. Their curated challenge sets, compris-
ing 2,000 sentences per direction evenly divided
into four difficulty tiers, offer a rigorous basis
for testing how models perform under linguistic
and structural stressors. Incorporating such OOD
evaluations helps ensure that fine-tuned models
remain robust under diverse and unpredictable
input conditions, a crucial requirement for on-
device MT applications.

2.2 Evaluation Metrics and Multi-
faceted Quality Assessment

Selecting appropriate evaluation metrics is cen-
tral to understanding model performance holisti-
cally. Although surface-form metrics like BLEU
[4] have long been standards, they may fail to
capture subtle semantic nuances. Embedding-
based metrics such as BERTScore [7] offer deeper
semantic sensitivity, but exhibit weaknesses in
recognizing synonyms. Chen et al. [1] exam-
ined a broad range of 28 metrics, highlighting
the need for a balanced approach: embedding-
based metrics excel at detecting semantic anoma-
lies, while traditional measures like BLEU and
chrF [5] provide stable, domain-agnostic per-
formance benchmarks. Guided by these in-
sights, this project employs a combination of met-
rics—potentially including BLEU, BERTScore,
COMET, and BLEURT—to yield a more com-
prehensive quality assessment.

2.3 Parameter Efficient Fine-
Tuning Techniques

Beyond dataset quality and evaluation rigor, com-
putational efficiency is paramount for MT sys-
tems running on edge devices. To address re-
source constraints, Hu et al. [3] introduced Low-
Rank Adaptation (LoRA), a parameter-efficient
fine-tuning method that updates only a small sub-
set of model parameters via rank-decomposition
matrices. This approach achieves performance on
par with full fine-tuning but at substantially re-
duced computational and memory costs. Inte-
grating LoRA with advanced models like mBART
and Flan-T5 supports the development of high-
quality, lightweight MT solutions suitable for de-
ployment in low-resource environments. By incor-
porating LoRA and similar techniques, the pro-
posed workflow aims to deliver robust, scalable,
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and efficient translation models.

In summary, these literature-driven insights
guide the proposed methodology: using the
domain-rich UM-Corpus, adopting a balanced
metric (BLEU Score) for comprehensive assess-
ment, and employing parameter-efficient fine-
tuning methods like LoRA and Layer-freezing to
ensure that the final models meet both perfor-
mance and resource constraints.

3 Experimental Design

3.1 Data

For our experiments, we utilize a subset of
the UM-Corpus (Zh-En) [6] which is a widely
used parallel corpus for Chinese-English machine
translation. The data consists of paired sentences,
one in Chinese (Zh) and its corresponding trans-
lation in English (En). This resource is known
for its diverse content across multiple domains,
making it suitable for assessing domain-specific
translation performance.

Split Samples Avg.
Tokens
(En)

Avg.
Tokens
(Zh)

Training 80,000 12.4 13.1
Development 10,000 12.5 13.0
Test 10,000 12.3 13.2

Table 1: Data Split and Statistics: Each sample
corresponds to one English-Chinese sentence pair.

The data is slightly skewed towards general-
domain translations. For our evaluation, we fo-
cus on two distinct domains: Science and Educa-
tion. Within these domains, we note a distribu-
tion skew: Science-related sentences make up ap-
proximately 40% of the test set, while Education-
related sentences account for the remaining 60%.
Table 2 shows an example from the dataset.

English Researchers observed a signif-
icant increase in gene expres-
sion under these conditions.

Chinese (Zh)

Table 2: Example Sentence Pair from the Science
Domain

3.2 Data Preparation and Prepro-
cessing

3.2.1 Data Loading and Extraction

The dataset was obtained from a compressed .zip
archive containing bilingual .txt files. Each file
consisted of alternating English and Chinese lines,
and every pair of lines constituted a unique trans-
lation unit.

3.2.2 Data Preprocessing and Sampling

For the baseline evaluation, a sample of 100,000
translation units was used. A smaller subset of
10,000 units was created for hyperparameter tun-
ing experiments. The combined dataset was then
shuffled using a fixed seed (42) to ensure repro-
ducibility. Subsequently, the data was partitioned
into training (80%), development (10%), and test
(10%) sets.

3.2.3 Tokenization

All sentences were tokenized using a suitable to-
kenizer. After tokenization, sentences were either
padded or truncated to a maximum length of 50
tokens. To exclude padding tokens from loss com-
putation, they were replaced with -100 in the tar-
get sequences. Finally, the processed data was
converted into PyTorch-compatible datasets, pro-
viding input ids, attention mask, and labels

for subsequent model training.

3.3 Evaluation Metric

We employ the BLEU [4] score as our primary
evaluation metric. BLEU (Bilingual Evaluation
Understudy) measures the n-gram overlap be-
tween machine-generated translations and refer-
ence translations. It is calculated as follows:

BLEU = exp
(∑N

n=1 wn log pn

)
×min

(
1, output length

reference length

)
where pn is the precision of n-grams, wn are

the weights (usually uniform), and the brevity
penalty ensures that shorter translations are not
unfairly favored. BLEU has been widely used in
MT research, providing a standardized and repro-
ducible way to compare different approaches.

3.4 Simple Baseline Performance

To begin, we evaluated the pre-trained mod-
els mBART and M2M100 without any domain-
specific fine-tuning. Table 3 presents the baseline
BLEU scores.
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Domain mBART Baseline BLEU M2M100 Baseline BLEU

Science 0.1223 0.0231
Education 0.1169 0.0347

Table 3: Simple Baseline BLEU Scores without
Finetuning.

These low scores highlight the difficulty of the
task, especially for M2M100 in the Science do-
main. This baseline serves as a clear start-
ing reference point, allowing us to measure sub-
sequent improvement once domain-specific fine-
tuning methods are applied.

4 Experimental Results

4.1 Establishing a Strong Baseline

To create a robust baseline for our translation
task, we fine-tuned both our models, using the
paired English–Chinese dataset. These models
employ dedicated tokenizers (MBart50Tokenizer
and M2M100Tokenizer) that were configured to
facilitate bilingual fine-tuning. Prior to large-
scale fine-tuning, a preliminary hyperparameter
tuning stage was conducted on a smaller subset
of the data to identify optimal training parame-
ters.

Hyperparameter Tuning (10,000 Samples)

In the tuning phase, we systematically varied key
hyperparameters to identify a configuration yield-
ing stable training and improved validation per-
formance.

Hyperparameter Values Explored

Learning Rates [2e-5, 3e-5, 5e-5]

Batch Sizes [8, 16]

Number of Epochs [1, 2, 3]

Evaluation Criteria Training and validation
losses

Table 4: Configurations explored during hyperpa-
rameter tuning.

Here are the best performing hyper-parameters:

Domain Model LR Batch Best Epoch Loss Runtime (s) Samples/sec

Education mBART 2e-05 16 1 1.915 4.48 223.22
Education M2M100 2e-05 16 3 2.656 2.25 444.42
Science mBART 2e-05 8 1 1.815 5.15 194.11
Science M2M100 2e-05 16 1 2.086 2.32 431.81

Table 5: Performance comparison of models
across domains.

Fine-Tuning with Selected Hyper parame-
ters (50,000 Samples)

After identifying the optimal set of hyperparame-
ters, we fine-tuned both mBART-50 and M2M100
models on the full 50,000-sample dataset. This
step aimed to establish a high-quality baseline
against which future improvements could be mea-
sured.

Model Domain Baseline Fine-Tuned Improvement (%) Training Time (hours)

mBART Science 0.1209 0.1997 63.28 1.46
mBART Education 0.1169 0.1192 4.85 1.44
M2M100 Science 0.0222 0.1200 419.48 1.94
M2M100 Education 0.0342 0.0809 143.56 0.83

Table 6: Comparison of Baseline and Fine-Tuned
Models Across Models and Domains

4.2 Extensions

4.2.1 Incorporating LoRA

i. Hyperparameter Tuning
We employed a hybrid approach by initially
performing hyperparameter tuning on the
base models to identify effective configura-
tions (e.g., learning rate, batch size). After
establishing these foundational settings, we
applied LoRA to the models. Subsequently,
we conducted lightweight hyperparameter
tuning focused on LoRA-specific parameters,
such as the rank value r, scaling factor α,
and dropout rate, to further refine perfor-
mance.

Below are the best parameter settings for hy-
perparameter tuning with LoRA:

Model Domain r α Dropout Validation Loss
mBART Science 8 64 0.0 2.024966
M2M100 Education 8 64 0.0 2.791431
M2M100 Science 8 64 0.0 2.874502
mBART Education 8 64 0.0 1.942648

Table 7: Best Parameter Settings and Validation
Loss

ii. Model Performance

Metric mBART
(Science)

mBART
(Education)

M2M100
(Science)

M2M100
(Education)

Baseline BLEU
Score

0.1223 0.1169 0.0231 0.0347

Fine-Tuned
BLEU Score

0.1997 0.1192 0.1200 0.0833

LoRA Optimized
BLEU Score

0.1352 0.1153 0.0976 0.0782

LoRA vs Fine-
Tuned

-32.30% -6.41% -18.67% -6.12%

Table 8: Comparison of Baseline, Fine-Tuned,
and LoRA-Optimized BLEU Scores Across Mod-
els and Domains.
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iii. Discussion
The analysis of percentage decreases in
BLEU scores highlights the varying impact
of LoRA optimization across models and
domains. In the science domain, mBART
experienced the largest drop (32.30%), un-
derscoring the challenges of handling com-
plex scientific text. In contrast, M2M100
showed a moderate decline (18.67%), sug-
gesting LoRA’s relative efficiency in mul-
tilingual contexts. In the education do-
main, both models exhibited minimal de-
creases (mBART: 6.41%, M2M100: 6.12%),
indicating that LoRA performs well with
structured and predictable content. Overall,
while LoRA optimization maintains competi-
tive performance, the science domain demon-
strates a greater reliance on fine-tuning com-
pared to the education domain.

4.2.2 Incorporating Layer Freezing

i. Hyperparamer Tuning
For this technique, we first analyzed the ar-
chitecture and the number of layers in the
encoder and decoder blocks for both mod-
els. Since both models are pre-trained for
machine translation tasks, we experimented
with freezing all but one, all but two, and
all but three layers on both the encoder and
decoder sides, recording the results.

Category Model Encoding
Layers
Frozen

Decoding
Layers
Frozen

Loss
(Eval)

Education mBART 8 8 1.9311
Education M2M 8 8 2.7466
Science mBART 8 8 1.9126
Science M2M 8 8 2.6673

Table 9: Best layer freezing parameters and eval-
uation loss for mBART and M2M models in Ed-
ucation and Science.

ii. Model Performance

Metric mBART
(Science)

mBART
(Education)

M2M100
(Science)

M2M100
(Education)

Baseline BLEU 0.1223 0.1169 0.0231 0.0347
Fine-Tuned
BLEU

0.1997 0.1192 0.1200 0.0809

LoRA BLEU 0.1352 0.1153 0.0976 0.0782
Freezing BLEU 0.1597 0.1178 0.1118 N/A
LoRA vs Fine-
Tuned (%)

-32.30% -6.41% -18.67% -6.12%

Freezing vs Fine-
Tuned (%)

-20.07% -4.38% -6.83% N/A

Freezing vs
LoRA (%)

18.10% 2.17% 14.61% N/A

Table 10: Comparison of BLEU Scores and Per-
formance Percentages Across Models and Do-
mains

Comparing The Models Sofar:

(a) Layer Freezing vs. LoRA:

• Performance Comparison: Layer
freezing consistently achieves
higher BLEU scores than LoRA,
with improvements ranging from
2.17% to 18.10%.

• Parameter Analysis: Layer freezing
enables a substantially larger set of
trainable parameters than LoRA:

– For mBART, layer freezing
offers 375.74M trainable pa-
rameters compared to LoRA’s
76.75M.

– For MTM, layer freezing offers
248.76M trainable parameters
compared to LoRA’s 76.75M.

(b) LoRA vs. Fine-Tuned:

• Performance Comparison: LoRA
consistently yields lower BLEU
scores compared to a fully fine-
tuned model. The observed per-
formance drops range from -6.12%
to -32.30%, which can be at-
tributed to the substantial reduc-
tion in trainable parameters.

• Parameter Analysis: LoRA signifi-
cantly reduces the number of train-
able parameters:

– For mBART, only 76.75M
out of 612M parameters
(12.54%) are trainable.

– For MTM, only 76.75M out
of 485M parameters (15.82%)
are trainable.

(c) Layer Freezing vs. Fine-Tuned:

• Performance Comparison: Al-
though layer freezing outperforms
LoRA in all tested domains, it still
falls slightly short of the fully fine-
tuned model. The performance re-
ductions range from -4.38% to -
20.07%.

• Parameter Analysis: By freezing 8
of the 12 layers, parameter updates
are limited to a subset of the model:

– FormBART, trainable param-
eters are reduced to 375.74M
out of 610M (61.51%).

– For MTM, trainable parame-
ters are reduced to 248.76M
out of 483M (51.41%).
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Figure 3: We only train A and B. LoRA Illustration from Paper [3]

GPU Usage Comparisons:

All GPU memory usage was measured on an
NVIDIA A100 with 40 GB VRAM available
through Google Colab, using PyTorch version
1.12.1 and CUDA version 11.3. Measurements
were taken using NVIDIA’s nvidia-smi tool dur-
ing the peak memory consumption phase of train-
ing.

• Normal Fine-Tuning:

– Using all parameters results in the high-
est GPU memory usage, approximately
7 GB for mBART and 5.5 GB for
M2M100.

– This approach also incurs considerably
longer training times compared to the
other methods.

• LoRA:

– This method is the most parameter-
efficient, requiring only around 2 GB
of memory for both models.

– It also maintains stable memory usage
throughout the training process, mak-
ing it ideal for resource-constrained set-
tings.

• Layer Freezing:

– Freezing roughly half the parameters re-
duces memory usage to approximately
4.5 GB for mBART and 3.5 GB for
M2M100.

– Training times are shorter than normal
fine-tuning and are comparable to those
observed with LoRA.

4.2.3 Exploring Quantization:

In the previous sections, we explored multi-
language machine translation models and various
fine-tuning techniques. However, we now aim to
evaluate whether large quantized general-purpose

models and compact, language-specific models
can remain competitive in translation tasks while
being small enough to run on personal computers.

To this end, we used two models:
1. Chinese-Alpaca: A fine-tuned version of
LLaMA with 7 billion parameters, optimized for
Chinese content. Its quantized version, using a 4-
bit format, reduces storage requirements to 4 GB,
making it suitable for personal computers.
2. Marian MT: A compact, language-specific
Chinese-to-English translation model with 60 mil-
lion parameters, designed exclusively for this lan-
guage pair.

Model Name
Trainable
Parameters

Education
BLEU Score

Science
BLEU Score

Helsinki
(Marian MT)

77,419,008 0.1029 0.1058

TheBloke/Chinese
-Alpaca-2-7B-GPTQ

453,251,072 0.0511 0.0403

Table 11: Trainable Parameters and BLEU Scores
for Helsinki (Marian MT) and TheBloke/Chinese-
Alpaca-2-7B-GPTQ across Education and Science
domains.

From our results above, we notice that quan-
tized models offer significant storage and infer-
ence efficiency benefits. However, their BLEU
scores demonstrate the inherent trade-off between
computational efficiency and performance. Quan-
tization makes large models accessible for per-
sonal use but falls short in competitive translation
tasks, especially when compared to more sophis-
ticated techniques like layer freezing or LoRA.

Comparison of Parameters
Model and

Configuration
Total

Parameters
Trainable

Parameters (All)
Percentage to

Fine-tune
mBART (original) 610,879,488 610,879,488 100.00%
mBART (LoRA) 612,059,136 76,750,848 12.54%
mBART (Layer Freezing) 610,879,488 375,736,320 61.51%
MTM (original) 483,905,536 483,905,536 100.00%
MTM (LoRA) 485,085,184 76,750,848 15.82%
MTM (Layer Freezing) 483,905,536 248,762,368 51.41%
Helsinki (Marian MT) 77,419,008 77,419,008 100.00%
TheBloke/Chinese-Alpaca-2-7B-GPTQ 453,251,072 453,251,072 100.00%

Table 12: Comparison of Parameters Across Mod-
els and Configurations

The above table highlights the trade-offs be-
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tween the fine-tuning techniques implemented
and their impact on computational efficiency:

• Original Models: Both mBART and MTM
fully fine-tune all parameters (100%), achiev-
ing the highest performance but at significant
computational cost.

• LoRA: Drastically reduces trainable pa-
rameters to 12.54% (mBART) and 15.82%
(MTM), offering computational efficiency.

• Layer Freezing: Balances efficiency and
performance by freezing lower layers, with
61.51% (mBART) and 51.41% (MTM) of pa-
rameters trainable.

• Compact Models: Helsinki (Marian MT)
utilizes all of its 77M parameters, benefit-
ing from its smaller size, while the quantized
Chinese-Alpaca (GPTQ) retains 453M train-
able parameters. Despite the larger param-
eter count, the reduced precisions (4-bit and
8-bit) significantly lower computational re-
quirements, making them highly efficient for
resource-constrained environments.

4.3 Error Analysis

We analyzed errors across mBART and M2M100
models under the following methods: Base, Fine-
Tuned, Freeze, and LoRA on the Education Do-
main.

4.3.1 Classification of Errors

i. Word-Level Errors Issues with word
choice, missing words, or extra words.
Example:

• Ground Truth: Though he is fifteen,
he has a mental age of less than five.

• Prediction: Although he is 15 years
old, his intellectual age is less than 5
years old.

ii. Structural Errors Sentence-level inconsis-
tencies, such as grammar issues or word order
mismatches.
Example:

• Ground Truth: And few companies
offer more products for the manage-
ment, conversion, distribution and min-
imization of power than Fairchild.

• Prediction: From the beginning to the
end we adhere to one strategy: to be-
come the world’s leading provider of
high performance products for many
markets.

iii. Other Errors Rare issues like nonsensical
or untranslated outputs (likely translate to
other languages).
Example:

• Ground Truth: Simplify the axiom
system of lattice implication algebras,
which was given by Y.

• Prediction:

4.3.2 Summary of Error Trends

M2M100 Models:

• LoRA: Highest Word-Level Errors (3,960),
with frequent missing/substituted words and
structural misalignments (2,057).

• Fine-Tuned: High Word-Level Errors
(3,884) and Structural Errors (2,085), reflect-
ing unstable sentence structures.

• Base/Freeze: Moderate Structural Errors
(˜1,500–1,900); dominated by Word-Level
Errors.

mBART Models:

• LoRA/Fine-Tuned: Lower Word-Level
Errors (˜3,250), occasional synonyms or
word omissions; minimal Structural Errors
(˜1,300).

• Base/Freeze: Stable grammar with fewer
structural inconsistencies (˜1,200); errors
mainly in word substitutions.

5 Conclusions

This project underscores the potential of
parameter-efficient fine-tuning techniques in
adapting MT models for edge device deploy-
ment. By systematically comparing traditional
fine-tuning with methods like LoRA and layer
freezing, we revealed trade-offs between compu-
tational efficiency and translation quality. The
findings highlight the viability of lightweight MT
models, especially in domains with predictable
content, while demonstrating the need for fur-
ther research in complex contexts, such as scien-
tific translations. Future work will focus on in-
tegrating quantization techniques and exploring
domain-specific optimization to further enhance
the practicality and robustness of MT systems in
constrained environments.

• Fine-Tuned: Fully utilizes all parameters
(100%) for maximum performance.
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• LoRA: Trades performance for computa-
tional efficiency by updating only 12–16%
of parameters.

• Layer Freezing: Strikes a balance, freez-
ing lower layers to maintain efficiency while
training the more adaptable upper layers,
outperforming LoRA in most scenarios.

• Quantization: Significantly decreases
memory usage and enables deployment on
resource-limited devices, but often comes
at the cost of reduced translation quality,
especially in complex domains like science.
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7 Appendix

7.1 Hyper-parameter Tuning for
Baseline Model Results

Learning Rate Batch Size Number of Epochs Training Loss Validation Loss

2e-5 8 1 1.9563 1.9182

2e-5 8 2 1.4845 1.9859

2e-5 8 3 1.2150 2.0565

2e-5 16 1 1.9466 1.9152

2e-5 16 2 1.5788 1.9522

2e-5 16 3 1.3677 1.9965

3e-5 8 1 1.9760 1.9337

3e-5 8 2 1.3826 2.0395

3e-5 8 3 1.0099 2.1650

3e-5 16 1 1.9566 1.9234

3e-5 16 2 1.4807 1.9864

3e-5 16 3 1.1861 2.0703

5e-5 8 1 2.0179 1.9713

5e-5 8 2 1.2685 2.1388

5e-5 8 3 0.7508 2.3698

5e-5 16 1 1.9842 1.9463

5e-5 16 2 1.3523 2.0622

5e-5 16 3 0.9291 2.2199

Table 13: mBART Fine-Tuning Hyperparameters
and Losses for Education

Learning Rate Batch Size Number of Epochs Training Loss Validation Loss

2e-5 8 1 1.8151 1.8982

2e-5 8 2 1.3700 1.8215

2e-5 8 3 1.1274 1.8953

2e-5 16 1 1.9304 1.8253

2e-5 16 2 1.5488 1.8156

2e-5 16 3 1.2680 1.8524

3e-5 8 1 1.9062 1.8168

3e-5 8 2 1.2550 1.8457

3e-5 8 3 0.9232 1.9832

3e-5 16 1 1.9273 1.8188

3e-5 16 2 1.4352 1.8282

3e-5 16 3 1.0832 1.9074

5e-5 8 1 1.9328 1.8386

5e-5 8 2 1.1167 1.9054

5e-5 8 3 0.6745 2.3698

5e-5 16 1 1.9416 1.9463

5e-5 16 2 1.2848 2.0622

5e-5 16 3 0.8313 2.2199

Table 14: mBART Fine-Tuning Hyperparameters
and Losses for Science

Learning Rate Batch Size Number of Epochs Training Loss Validation Loss

2e-5 8 1 2.6341 2.5277

2e-5 8 2 2.1900 2.4427

2e-5 8 3 1.8121 2.4457

2e-5 16 1 2.6846 2.5577

2e-5 16 2 2.2645 2.4678

2e-5 16 3 1.9541 2.4428

3e-5 8 1 2.6137 2.5050

3e-5 8 2 2.0599 2.4494

3e-5 8 3 1.6219 2.4748

3e-5 16 1 2.6547 2.5285

3e-5 16 2 2.1253 2.4423

3e-5 16 3 1.7659 2.4484

5e-5 8 1 2.6147 2.5022

5e-5 8 2 1.9222 2.4868

5e-5 8 3 1.3821 2.5506

5e-5 16 1 2.6320 2.5020

5e-5 16 2 1.9724 2.4582

5e-5 16 3 1.5227 2.4989

Table 15: M2M100 Fine-Tuning Hyperparame-
ters and Losses for Education
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Learning Rate Batch Size Number of Epochs Training Loss Validation Loss

2e-5 8 1 1.5302 1.5447

2e-5 8 2 1.1101 1.5898

2e-5 8 3 0.7915 1.6707

2e-5 16 1 1.4962 1.5333

2e-5 16 2 1.1709 1.5618

2e-5 16 3 0.9250 1.6162

3e-5 8 1 1.5792 1.5947

3e-5 8 2 1.0303 1.6540

3e-5 8 3 0.6408 1.7778

3e-5 16 1 1.5286 1.5670

3e-5 16 2 1.0864 1.6112

3e-5 16 3 0.7767 1.6992

5e-5 8 1 1.6798 1.6967

5e-5 8 2 0.9531 1.7703

5e-5 8 3 0.4760 1.9640

5e-5 16 1 1.5986 1.6399

5e-5 16 2 0.9914 1.7082

5e-5 16 3 0.5911 1.8461

Table 16: M2M100 Fine-Tuning Hyperparame-
ters and Losses for Science

7.2 Hyper-parameter Tuning for
LoRA Results

Rank Values (r) Scaling Factor (α) Dropout Values Training Loss Validation Loss
8 16 0.0 2.269500 2.186194
8 16 0.1 2.218100 2.136166
8 16 0.2 2.228000 2.146366
8 32 0.0 2.072600 2.003432
8 32 0.1 2.070800 2.004421
8 32 0.2 2.072200 2.005456
8 64 0.0 2.033000 1.967467
8 64 0.1 2.031000 1.968252
8 64 0.2 2.032000 1.968983
16 16 0.0 2.280500 2.197836
16 16 0.1 2.280000 2.202169
16 16 0.2 2.290800 2.214560
16 32 0.0 2.076000 2.006214
16 32 0.1 2.073900 2.007113
16 32 0.2 2.075300 2.008230
16 64 0.0 2.039500 1.973194
16 64 0.1 2.036900 1.973644
16 64 0.2 2.037400 1.973854
32 16 0.0 2.260900 2.176215
32 16 0.1 2.266600 2.187254
32 16 0.2 2.276200 2.197995
32 32 0.0 2.075400 2.005779
32 32 0.1 2.073200 2.006605
32 32 0.2 2.074700 2.007794
32 64 0.0 2.041200 1.974903
32 64 0.1 2.038600 1.975254
32 64 0.2 2.039600 1.975913

Table 17: Hyperparameter Fine-Tuning for
LoRA-injected mBART on Education Domain

Rank Values (r) Scaling Factor (α) Dropout Training Loss Validation Loss
8 16 0.0 2.075400 2.084480
8 16 0.1 2.073500 2.084773
8 16 0.2 2.074500 2.085670
8 32 0.0 2.045600 2.054320
8 32 0.1 2.044000 2.054817
8 32 0.2 2.045200 2.055982
8 64 0.0 2.016100 2.024966
8 64 0.1 2.015000 2.025520
8 64 0.2 2.016400 2.026753
16 16 0.0 2.075600 2.084319
16 16 0.1 2.073300 2.084745
16 16 0.2 2.074400 2.085694
16 32 0.0 2.045800 2.054456
16 32 0.1 2.043700 2.054771
16 32 0.2 2.045100 2.055901
16 64 0.0 2.016300 2.025228
16 64 0.1 2.014800 2.025674
16 64 0.2 2.016100 2.026709
32 16 0.0 2.075500 2.084476
32 16 0.1 2.073600 2.085136
32 16 0.2 2.074700 2.086110
32 32 0.0 2.046100 2.055015
32 32 0.1 2.044500 2.055676
32 32 0.2 2.045600 2.056716
32 64 0.0 2.016400 2.025542
32 64 0.1 2.015300 2.026190
32 64 0.2 2.016600 2.027361

Table 18: Hyperparameter Fine-Tuning for
LoRA-injected mBART on Science Domain

Rank Values (r) Scaling Factor (α) Dropout Training Loss Validation Loss
8 16 0.0 3.061000 2.842442
8 16 0.1 3.059800 2.842457
8 16 0.2 3.061900 2.844099
8 32 0.0 3.031200 2.816317
8 32 0.1 3.032200 2.817689
8 32 0.2 3.034500 2.819312
8 64 0.0 2.999900 2.791431
8 64 0.1 3.003500 2.794098
8 64 0.2 3.006600 2.796152
16 16 0.0 3.061600 2.842710
16 16 0.1 3.062200 2.844057
16 16 0.2 3.063800 2.845312
16 32 0.0 3.032000 2.816813
16 32 0.1 3.033200 2.818718
16 32 0.2 3.035100 2.820055
16 64 0.0 3.000700 2.792005
16 64 0.1 3.003600 2.794752
16 64 0.2 3.006200 2.796460
32 16 0.0 3.061600 2.842674
32 16 0.1 3.061800 2.843768
32 16 0.2 3.063400 2.844864
32 32 0.0 3.032100 2.816821
32 32 0.1 3.032900 2.818080
32 32 0.2 3.034800 2.819568
32 64 0.0 3.001200 2.792586
32 64 0.1 3.003700 2.794915
32 64 0.2 3.006200 2.796576

Table 19: Hyperparameter Fine-Tuning for
LoRA-injected M2M100 on Education Domain
(3rd epoch)

Rank (r) Alpha (α) Dropout Training Loss Validation Loss Evaluation Loss
8 16 0.0 3.233600 3.063320 3.063320
8 16 0.1 3.227100 3.056787 3.056787
8 16 0.2 3.237200 3.066366 3.066366
8 32 0.0 3.094100 2.931028 2.931028
8 32 0.1 3.096200 2.934254 2.934254
8 32 0.2 3.101000 2.938328 2.938328
8 64 0.0 3.033500 2.874502 2.874502
8 64 0.1 3.033800 2.876885 2.876885
8 64 0.2 3.037700 2.880006 2.880006
16 16 0.0 3.240600 3.070621 3.070621
16 16 0.1 3.249300 3.079134 3.079134
16 16 0.2 3.260000 3.089163 3.089163
16 32 0.0 3.098900 2.936606 2.936606
16 32 0.1 3.101100 2.940071 2.940071
16 32 0.2 3.106300 2.944297 2.944297
16 64 0.0 3.036000 2.877845 2.877845
16 64 0.1 3.036300 2.879981 2.879981
16 64 0.2 3.040700 2.883339 2.883339
32 16 0.0 3.244200 3.073837 3.073837
32 16 0.1 3.251700 3.081498 3.081498
32 16 0.2 3.263600 3.092737 3.092737
32 32 0.0 3.102300 2.939461 2.939461
32 32 0.1 3.103100 2.942031 2.942031
32 32 0.2 3.108300 2.946282 2.946282
32 64 0.0 3.035800 2.877304 2.877304
32 64 0.1 3.035900 2.879772 2.879772
32 64 0.2 3.040700 2.883350 2.883350

Table 20: Hyperparameter Fine-Tuning for
LoRA-injected M2M100 on Science Domain

7.3 GPU Consumption Graphs

Figure 4: GPU Consumption: mBART Normal
vs LoRA vs Layer Freezing on Education Domain
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Figure 5: GPU Consumption: mBART Normal
vs LoRA vs Layer Freezing on Science Domain

Figure 6: GPU Consumption: M2M Normal vs
LoRA vs Layer Freezing on Education

Figure 7: GPU Consumption: M2M Normal vs
LoRA vs Layer Freezing on Science Domain
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