
Overview of Work Accomplished 

●​ Implemented a lightweight FAT filesystem (PennFAT) with file and directory operations. 
●​ Designed and implemented a shell capable of running built-in and user commands. 
●​ Built a scheduler supporting multi-level feedback queues and aging for fair process 

management. 
●​ Implemented custom system calls (k_open, k_read, k_write, k_close, k_lseek, etc.). 
●​ Added a lightweight user-space threading library (spthread) with manual suspend/resume 

control. 
●​ Implemented various stress test commands to simulate load and validate scheduler and 

process robustness. 

 

Description of Code and Code Layout 

●​ src/builtins.* — Shell built-in command implementations (e.g., ps, sleep, kill, nice). 
●​ src/commands.* — System call and filesystem operation handlers (cp, mv, chmod, ls, 

etc.). 
●​ src/directory.* — Directory management, creation, lookup, and deletion. 
●​ src/fat.* — FAT table initialization, reading, writing, block allocation, and deallocation. 
●​ src/file.* — File descriptor operations and GFDT (Global File Descriptor Table) 

management. 
●​ src/kernel.* — Core kernel system call routing and process creation support. 
●​ src/jobs.* — Background and foreground job tracking. 
●​ src/pennfat.* — Filesystem mounting/unmounting logic. 
●​ src/queue.* — Linked list queues used for scheduling processes. 
●​ src/scheduler.* — Scheduler with multiple queues and current running process tracking. 
●​ src/spthread.* — Lightweight thread abstraction using POSIX threading with signal 

control. 
●​ src/syscalls.* — Wrappers around system calls and user-to-kernel space interactions. 
●​ src/initshell.* — Shell and init process startup sequence. 
●​ src/stress.* — Stress testing utilities to validate robustness under load. 
●​ src/Vec.* — Dynamic array (vector) implementation used internally across modules. 

The overall project builds into a shell executable that interacts with the FAT filesystem and 
manages processes and jobs using a custom kernel and scheduler. 

 

Directory Structure 



The PennOS project is organized into the following directory structure: 

25sp-cis5480-pennos-34/​
├── bin/ # Binary executables directory​
│ └── pennfat -> pennos # Symbolic link to main executable​
├── doc/ # Documentation directory​
│ ├── html/ # HTML documentation generated by Doxygen​
│ └── latex/ # LaTeX documentation generated by Doxygen​
├── FAT/ # FAT filesystem related components​
│ └── simp-shell/ # Simple shell implementation for FAT​
│ ├── parser.c # Command parser for the shell​
│ └── parser.h # Header for command parser​
├── src/ # Source code directory​
│ ├── builtins.* # Shell built-in commands (ps, sleep, kill, etc.)​
│ ├── commands.* # System call handlers (cp, mv, chmod, ls, etc.)​
│ ├── directory.* # Directory management operations​
│ ├── fat.* # FAT table operations​
│ ├── file.* # File descriptor operations​
│ ├── globals.h # Global constants and definitions​
│ ├── handle_fat_cmd.* # FAT command handling​
│ ├── initshell.* # Shell initialization​
│ ├── jobs.* # Background/foreground job management​
│ ├── kernel.* # Core kernel functionality​
│ ├── log.* # Logging utilities​
│ ├── our_errno.* # Custom error codes​
│ ├── panic.* # Error handling and panic functions​
│ ├── pcb.* # Process Control Block implementation​
│ ├── pennfat.* # PennFAT filesystem implementation​
│ ├── pennos.* # Main PennOS system​
│ ├── queue.* # Queue data structure for scheduler​
│ ├── scheduler.* # Process scheduler implementation​
│ ├── spthread.* # Lightweight threading library​
│ ├── stress.* # Stress testing utilities​
│ ├── syscalls.* # System call implementations​
│ └── Vec.* # Vector (dynamic array) implementation​
└── test/ # Test directory​
├── build_tests.sh # Script to build test executables​
├── queue_test.c # Tests for queue implementation​
├── sched-demo.c # Scheduler demonstration​
├── scheduler_test.c # Tests for scheduler implementation​
└── vec_test.c # Tests for vector implementation 



Each component is designed to be modular and focused on a specific aspect of the operating 
system: 

●​ Core OS Components: kernel, scheduler, PCB, syscalls 
●​ Data Structures: Vec (vector), queue 
●​ Filesystem: pennfat, directory, file, fat 
●​ Shell Interface: builtins, commands, initshell, jobs 
●​ Utilities: log, panic, our_errno, stress 

 

General Comments and Grading Notes 

●​ We have tested file operations (touch, cat, mv, rm, chmod) under different edge cases 
(permissions denied, missing files, etc.). 

●​ Stress testing functions were used to validate scheduler correctness under high load 
conditions. 

●​ All built-in shell commands were manually verified in both normal and edge case 
scenarios. 

●​ Shell prevents termination via Ctrl+C and Ctrl+Z to protect its control over 
foreground/background processes. 

●​ Doxygen documentation for all structs, functions, and files has been generated and 
included (refman.pdf). 

 

 


