Overview of Work Accomplished

Implemented a lightweight FAT filesystem (PennFAT) with file and directory operations.
Designed and implemented a shell capable of running built-in and user commands.
Built a scheduler supporting multi-level feedback queues and aging for fair process
management.
Implemented custom system calls (k_open, k read, k write, k close, k_lseek, etc.).
Added a lightweight user-space threading library (spthread) with manual suspend/resume
control.

e Implemented various stress test commands to simulate load and validate scheduler and
process robustness.

Description of Code and Code Layout

src/builtins.* — Shell built-in command implementations (e.g., ps, sleep, kill, nice).
src/commands.* — System call and filesystem operation handlers (cp, mv, chmod, Is,
etc.).

src/directory.* — Directory management, creation, lookup, and deletion.

src/fat.* — FAT table initialization, reading, writing, block allocation, and deallocation.
src/file.* — File descriptor operations and GFDT (Global File Descriptor Table)
management.

src/kernel.* — Core kernel system call routing and process creation support.

src/jobs.* — Background and foreground job tracking.

src/pennfat.* — Filesystem mounting/unmounting logic.

src/queue.* — Linked list queues used for scheduling processes.

src/scheduler.* — Scheduler with multiple queues and current running process tracking.

src/spthread.* — Lightweight thread abstraction using POSIX threading with signal
control.

src/syscalls.* — Wrappers around system calls and user-to-kernel space interactions.
src/initshell.* — Shell and init process startup sequence.

src/stress.* — Stress testing utilities to validate robustness under load.

src/Vec.* — Dynamic array (vector) implementation used internally across modules.

The overall project builds into a shell executable that interacts with the FAT filesystem and
manages processes and jobs using a custom kernel and scheduler.

Directory Structure

The PennOS project is organized into the following directory structure:

25sp-cis5480-pennos-34/

— bin/ # Binary executables directory

| L pennfat -> pennos # Symbolic link to main executable
— doc/ # Documentation directory

| I— html/ # HTML documentation generated by Doxygen
| L— latex/ # LaTeX documentation generated by Doxygen
|— FAT/ # FAT filesystem related components

| L— simp-shell/ # Simple shell implementation for FAT

| |— parser.c # Command parser for the shell

| L parser.h # Header for command parser

— src/ # Source code directory

| I— builtins.* # Shell built-in commands (ps, sleep, kill, etc.)
| I— commands.* # System call handlers (cp, mv, chmod, Is, etc.)
| |—— directory.* # Directory management operations

| I—— fat.* # FAT table operations

| |— file.* # File descriptor operations

| |— globals.h # Global constants and definitions

| |— handle fat cmd.* # FAT command handling

| — initshell.* # Shell initialization

| I— jobs.* # Background/foreground job management

| I— kernel.* # Core kernel functionality

| I— log.* # Logging utilities

| I—— our_errno.* # Custom error codes

| I— panic.* # Error handling and panic functions

| |— pcb.* # Process Control Block implementation

| |— pennfat.* # PennFAT filesystem implementation

| I— pennos.* # Main PennOS system

| F— queue.* # Queue data structure for scheduler

| |— scheduler.* # Process scheduler implementation

| I— spthread.* # Lightweight threading library

| |—— stress.® # Stress testing utilities

| I— syscalls.* # System call implementations

| L— Vec.* # Vector (dynamic array) implementation

L— test/ # Test directory

I— build tests.sh # Script to build test executables

I— queue_test.c # Tests for queue implementation

— sched-demo.c # Scheduler demonstration

— scheduler_test.c # Tests for scheduler implementation

L vec_test.c # Tests for vector implementation

Each component is designed to be modular and focused on a specific aspect of the operating

system:

Core OS Components: kernel, scheduler, PCB, syscalls
Data Structures: Vec (vector), queue

Filesystem: pennfat, directory, file, fat

Shell Interface: builtins, commands, initshell, jobs
Utilities: log, panic, our_errno, stress

General Comments and Grading Notes

We have tested file operations (touch, cat, mv, rm, chmod) under different edge cases
(permissions denied, missing files, etc.).

Stress testing functions were used to validate scheduler correctness under high load
conditions.

All built-in shell commands were manually verified in both normal and edge case
scenarios.

Shell prevents termination via Ctrl+C and Ctrl+Z to protect its control over
foreground/background processes.

Doxygen documentation for all structs, functions, and files has been generated and
included (refman.pdf).

